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Abstract

Due to the increasing variety of products, the complexity in the development of technical
systems is growing more and more. Accordingly, the management of system variants is
a central aspect in the investigation of multifaceted systems with methods of Modeling
and Simulation (M&S). If the systems under investigation are modular-hierarchical, the
System Entity Structure (SES)/Model Base (MB) framework is an adequate and established
approach to variant management in M&S. This approach is based on a strict separation of
system variants or system structures on the one hand and reusable and parameterizable
basic components on the other hand. Different system structures, system variants, as
well as different system parameterizations are called system configurations. While system
configurations are represented in an SES, basic components of models are organized in
an MB. The SES is a special tree structure and the basic components represent dynamic
systems with defined input and output interfaces. The general SES/MB approach describes
the SES as an ontology for cross-domain and simulator-independent specification of system
configurations. The cross-domain nature of the SES is confirmed by a large number of
practical applications. Previous software implementations of the SES/MB framework show
that the organization of the MB in this respect is always simulator-specific. Furthermore,
implementations of the SES/MB framework also exhibit simulator dependencies in SES,
namely in referencing and parameterizing basic components of an MB. These limitations
are not of concern if only one specific M&S environment is used. However, this work
aims to overcome this limitation and support a model generation independent of an M&S
environment.

Complex and multifaceted systems, such as Cyber-Physical Systems (CPS), consist of
components from different technical domains. Components are modeled and simulated
with different and often domain-specific M&S environments. To generate an overall
system model, components in the MB must be organized for different M&S environments.
Furthermore, the specification of system configurations in the SES must also be truly
simulator-independent.

For cross-simulator M&S using the SES/MB framework, different methods are developed
in this thesis. Two approaches are presented for a simulator-independent organization
of an MB. One approach propagates the extension of the MB by a special software
component, while the second approach builds on the Functional Mock-up Interface (FMI).
FMI is an interface standard for models and is widely used in engineering. Furthermore,
concepts for simulator-independence of the specification of an SES and for automated
selection of configuration variants based on the SES are developed. All approaches
are embedded in an extended SES/MB-based software architecture. This supports an
automation of simulation studies starting with the selection of system configurations up
to the generation and execution of simulation models using different M&S environments.
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For the evaluation of the developed methods extensive software implementations were
done, which are conceptually pointed out. Furthermore, the application of all concepts
is evaluated on the basis of use cases from different domains. The use cases underline
the cross-system and cross-domain functionality of the developed methods. Overall, the
work contributes to simulator-independent variant management and to the automation of
simulation studies of models of modular-hierarchical and multifaceted systems.
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Kurzfassung

Durch die steigende Produktvielfalt nimmt die Komplexität bei der Entwicklung technischer
Systeme zunehmend zu. Demgemäß ist das Management von Systemvarianten ein zentraler
Aspekt bei der Untersuchung vielgestaltiger Systeme mit Methoden der Modeling and Simu-
lation (M&S). Sind die zu untersuchenden Systeme modular-hierarchisch aufgebaut, ist das
System Entity Structure (SES)/Model Base (MB)-Framework ein adäquater und etablierter
Ansatz zum Variantenmagement in der M&S. Dieser Ansatz basiert auf einer strikten
Trennung von Systemvarianten oder Systemstrukturen einerseits und wiederverwendbaren
und parametrierbaren Basiskomponenten andererseits. Verschiedene Systemstrukturen,
Systemvarianten sowie unterschiedliche Systemparametrierungen werden als Systemkon-
figurationen bezeichnet. Während die Systemkonfigurationen in einer SES dargestellt
werden, werden Basiskomponenten von Modellen in einer MB organisiert. Die SES ist eine
spezielle Baumstruktur und die Basiskomponenten repräsentieren dynamische Systeme mit
definierten Ein- und Ausgangsschnittstellen. Der allgemeine SES/MB-Ansatz beschreibt
die SES als eine Ontologie zur domänenübergreifenden und simulatorunabhängigen Spezi-
fikation von Systemkonfigurationen. Der domänenübergreifende Charakter der SES wird
durch eine Vielzahl praktischer Anwendungen bestätigt. Bisherige softwaretechnische
Umsetzungen des SES/MB-Frameworks zeigen, dass die Organisation der MB dahingehend
immer simulatorspezifisch erfolgt. Weiterhin weisen Implementationen des SES/MB-
Frameworks auch bei der SES Simulatorabhängigkeiten auf, nämlich beim Referenzieren
und Parametrieren von Basiskomponenten der MB. Diese Beschränkungen sind nicht von
Belang, wenn nur eine spezifische M&S Umgebung zum Einsatz kommt. Diese Arbeit
zielt darauf ab, diese Beschränkung zu überwinden und eine von einer M&S-Umgebung
unabhängige Modellgenerierung zu unterstützen.

Komplexe und vielgestaltige Systeme, wie zum Beispiel Cyber-Physical Systems (CPS),
bestehen aus Komponenten verschiedener technischer Domänen. Komponenten werden
mit unterschiedlichen und oft domänenspezifischen M&S Umgebungen modelliert und
simuliert. Zur Generierung eines Gesamtsystemmodells müssen in der MB Komponenten für
verschiedene M&S Umgebungen organisiert werden. Weiterhin muss auch die Spezifikation
von Systemkonfigurationen in der SES echt simulatorunabhängig sein.

Zur simulatorübergreifenden M&S mit dem SES/MB-Framework werden in der Arbeit
verschiedene Methoden entwickelt. Zur simulatorunabhängigen Organisation einer MB
werden zwei Ansätze vorgestellt. Ein Ansatz propagiert die Erweiterung der MB um eine
spezielle Softwarekomponente, während der zweite Ansatz auf das Functional Mock-up
Interface (FMI) aufbaut. FMI ist ein Schnittstellenstandard für Modelle und ist im Inge-
nieursbereich stark verbreitet. Weiterhin werden Konzepte zur Simulatorunabhängigkeit
der Spezifikation einer SES und zur automatisierten Auswahl von Konfigurationsvarianten
auf Basis der SES entwickelt. Alle Ansätze werden in eine erweiterte SES/MB-basierte Soft-
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warearchitektur eingebettet. Diese unterstützt eine Automation von Simulationsstudien
beginnend bei der Auswahl von Systemkonfigurationen bis zur Generierung und Ausführung
von Simulationsmodellen unter Nutzung verschiedener M&S Umgebungen. Zur Evaluierung
der entwickelten Methoden erfolgten umfangreiche softwaretechnische Umsetzungen, die
konzeptionell aufgezeigt werden. Weiterhin wird die Anwendung aller Konzepte anhand
von Use-Cases aus verschiedenen Domänen gezeigt und evaluiert. Die Use-Cases unterstre-
ichen die system- und domänenübergreifende Funktionalität der entwickelten Methoden.
Insgesamt wird mit der Arbeit ein Beitrag zum simulatorunabhängigen Variantenmanage-
ment und zur Automation von Simulationsstudien von Modellen modular-hierarchischer
und vielgestaltiger Systeme geleistet.
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1 Introduction

Modeling and Simulation (M&S) is an established method for the prediction and analysis of
the dynamic behavior of systems. In the research of modular-hierarchical and multifaceted
systems, variability modeling with suitable methods represents a central aspect. Moreover,
the M&S of complex technical systems is often performed using different environments
due to domain diversity. Based on these assumptions, first the motivation of this work is
detailed and on the basis of a general classification of M&S approaches, the focus of this
work is introduced. Finally, the objectives and the structure of the thesis are specified.

1.1 Motivation

In product development, product diversity is constantly increasing. In addition to new
products, different variants of a product are also being offered. This is particularly evident
in an example from the automotive sector: As early as in the year 2011, Oster [105]
writes that some Electronic Control Units (ECUs) in a car have up to 10,000 different
configuration options and more than 50 ECUs are installed. The number of ECUs in a
car has been growing ever since. Due to different configurations of the cars, a multitude
of individual software variants must be generated for the ECUs. Often, the required
functionality for the ECUs is modeled, tested simulatively and then the software for the
ECUs is automatically generated from the models. Consequently, the variability of the
software for the ECUs must be mapped in the models. Variant management methods
are used to present the variants in a structured and clear manner and to facilitate the
generation of the software. The structured approach allows the increasing complexity of
products to be taken into account. In the following, the umbrella term technical system
is used synonymously for a technical product in order to emphasize the interdisciplinary
relevance of the methods presented in this work.

A central building block in system development is the mapping of the system behavior
in models and the subsequent simulation. Complex systems are usually formed from
several subcomponents. Different product variants represent systems consisting of different
subcomponents with different arrangements. The simulation of systems of different domains
is usually done with different simulators, which are usually specialized on the challenges of
one domain.

Technical systems consisting of mechanical and electrical components combined with
software components and a communication infrastructure are today referred to as Cyber-
Physical Systems (CPS). They are characterized by a high degree of complexity. Modern
cars and machine tools are typical examples for CPS. The components of a CPS are often
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1 Introduction

developed using different domain-specific modeling approaches and modeling software.
Thus the simulation of the whole system is a multidisciplinary task.

To keep development costs low, including the necessary M&S for complex and variable
systems, approaches of variability modeling have to be combined with concepts of model
exchange. Various approaches have been developed for variability modeling in different
fields. Examples are the 150% model approach (Alt [2]) or the System Entity Structure
(SES)/Model Base (MB) approach (Zeigler et al. [167]), which are discussed in detail in
this thesis. One concept of model exchange is the separation of modeling language and
simulation programs. An example is the standardized modeling language Modelica [91].
Different simulation programs can interpret and execute models based on the Modelica
standard. An alternative approach is to specify a universal interface, such as the Functional
Mock-up Interface (FMI) (Blochwitz et al. [13]). Components specified in this way can be
organized in an MB and used and executed in different simulation programs.

The system behavior of complex systems can change completely by modifying subcom-
ponents. Therefore, it is necessary to create and test a model for each system variant.
To minimize the development costs of new variants of a product, extensive automation
of model-based testing of system variants is desirable. Automation includes aspects of
modeling, test procedure specification, and execution. For this purpose, models for different
target simulators should be automatically generatable and executable. The generation of
executable models for different target simulators enables the verification of the numerical
correctness of simulation programs. Simulators use different implementations of numerical
algorithms, even if the same name is used for the simulation algorithm (Junghanns and
Blochwitz [71]). The simulation results of one model simulated with various simulators
using one type of solver should ideally be identical.

In order to increase the acceptance of a methodical approach among engineers, an
important aspect is to provide comprehensive software support. The software must be
intuitive to use and provide extensive help, such as automatic checks, design patterns, or
examples. Furthermore, the software should provide at least one interface to a standardized
data format (e.g. Java Script Object Notation (JSON) or Extensible Markup Language
(XML)) to allow integration into a possibly existing architecture. Last but not least,
the software should be easy to install. This ensures the applicability of the developed
methods and favors the combination with existing programs. Application by different
engineers in different fields and domains ensures comprehensive testing and enables further
development.

1.2 General M&S Background

Systems increasingly consist of subcomponents of different domains, while simulation
tools are usually specialized on one domain. Consequently, M&S is often performed with
different tools. In the following, a classification of M&S approaches in terms of the number
of different tools is given.

The cassification in Figure 1.1 according to Geimer et al. [57] focuses on primarily
continuous systems. The number of modeling tools is plotted against the number of
integrators, which can be equated with simulators in general. The y-axis shows the number

2



1 Introduction

of the used modeling tools, while the x-axis shows the number of different simulators.
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Figure 1.1: Classification of M&S approaches according to Geimer et al. [57] (translated from
German to English).

Class III in Figure 1.1 specifies the use of one modeling tool and one simulator, which
is called classical simulation. For a multi-physical system, such as a CPS, in this case the
M&S environment should support different modeling formalisms. Practical examples are
the Modelica language [91] and associated simulators like OpenModelica [103] or Dymola
[38], MATLAB/Simulink [87], or AnyLogic [35]. A theoretical formalism concerning this
matter is provided by the Discrete Event System Specification (DEVS) theory and its
extensions (Zeigler et al. [167]).

Class I considers the use of different domain-specific modeling tools, whose models
are composed into an overall model and processed with a simulator. For this purpose, a
variety of model transformations have been developed that not only support the merging
of equation systems. As a representative example, the diverse work of Vangheluwe
and colleagues should be mentioned here (Vangheluwe [153], Vangheluwe et al. [154]).
Vangheluwe [152] shows that the DEVS theory can be seen as a common denominator for
multi-formalism modeling and refers to it as the assembler of modeling paradigms.

Class IV represents the use of one modeling tool and several simulators. The model
specification is separated for execution on multiple simulators. The typical use case of this
class are approaches for distributed or parallel simulation with the objective of runtime
reduction (Fujimoto [56], Fujimoto [55]).

Class II considers the use of different domain-specific M&S tools. Models of subsystems
of a whole system are only available for specific simulation tools. Each simulation tool
covers a specific domain and suits best for problems of this domain. The challenge of this
approach is the coupling of the different simulation tools and the associated numerical
problems, analogous to the requirements for distributed simulations according to class
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IV, although here the focus is usually not on runtime reduction. Practically implemented
simulator couplings are specific solutions for the involved simulators (Bastian et al. [8]).
Gomes et al. [59] give a detailed overview of the basics and requirements of this class. In
addition to the M&S of multi-physical systems, co-simulation is used in the context of
hardware in the loop simulation.

The focus of this work lies in the consideration of M&S approaches of class I and class
III. With respect to the M&S of multi-physical systems using different domain-specific
modeling approaches, it can be stated for both cases that the execution of the overall
multi-physical model by a simulator depends on the model transformation algorithms and
the numerical simulation algorithms. The fundamentals of this research are considered in
Chapter 2.

Variability modeling is a basic element in today’s system development. One approach
of variability modeling in M&S is the SES/MB approach. Figure 1.2 shows the SES/MB
approach according to Zeigler et al. [167]. For the description of systems a separation into
the structures and dynamic components takes place. While the dynamic basic components
are organized in an MB, the structure and parameter variants are described with an SES.
The SES is a special tree structure. Furthermore, the SES/MB framework defines two
basic methods: (i) pruning to derive a specific system variant from the SES and (ii) build
to generate an executable model using the components from the MB.

SES/MB Framework

SES

PES

pruning

build

SM

MB

Figure 1.2: The classic SES/MB framework according to Zeigler et al. [167].

1.3 Objectives and Structure of the Thesis

The SES supports a largely simulator-independent specification of system structures and
system variants. The modeling and organization of dynamic basic systems in an MB is
in this respect usually simulator specific. Accordingly, the derivation of a system variant
is simulator-independent and the model generation is specific to an M&S environment.
A current requirement is to generate and execute models for different simulators as
automatically as possible. The goal of this work is to analyze and further develop the
SES/MB approach with respect to: (i) variant management, (ii) automated variant
selection, (iii) model generation for different simulators, and (iv) automation of simulation
experiments with different model structures and model parameterizations.

Starting from Schmidt [135], the structure of simulation-based experiments is investigated
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and it is built on the SES/MB architecture presented there. The approach of Schmidt
[135] refers to only one specific M&S environment. Furthermore, not all description means
of the SES are supported. In this work, existing limitations regarding modeling with the
SES in conjunction with automated variant derivation and generation are addressed by
newly developed approaches.

In contrast to the SES, the MB is closely related to the used M&S environment. To
use the SES/MB approach across simulators, in this work on the one hand language and
simulator specific features are used. This is called native approach. On the other hand, the
established FMI standard is used as a universal model interface to support cross-simulator
model generation. This is called FMI-based approach.

Also based on the SES/MB architecture in Schmidt [135], a software architecture for
the automation of simulation-based experiments using different M&S environments was
developed for both the native approach and the FMI-based approach. The newly developed
architecture was implemented prototypically in the form of Python-based tools and using
standardized software interfaces and serves as a proof of concept.

The motivation and objectives lead to the investigation of the following hypotheses in
this thesis:

1. Modeling variability is a key aspect when analyzing technical systems.

2. Technical systems often need to be tested using different simulators.

3. Combining approaches for variability modeling and model exchange to tackle the
challenges in hypothesis 1 and 2.

4. An architecture for the automation of modeling complex systems with high degree
of variability and model generation as well as execution using different simulators is
useful.

5. The availability of intuitive software tools is the key to introduce new approaches
accepted by engineers.

In the following paragraphs, the structure of the thesis is presented, briefly summarizing
the contents of each chapter.

Chapter 2 introduces essential aspects of Model Engineering for Simulation (MES).
Based on a newly introduced life cycle model of M&S, the contents of this thesis are
delineated. In this context, a strict distinction is made between the modeling of a dynamic
system and its execution in a simulator. Furthermore, different types of dynamic systems
are discussed and the connection of M&S to the concept of Model-Driven Engineering
(MDE) of software engineering is established. The transfer of the objectives of MDE to
problems of M&S requires the use of general model interfaces. In the following, FMI is
presented as such an interface. In the following, approaches of variant modeling, variant
selection, and generation of executable simulation models are presented. For this purpose,
the example of a control system is introduced, which will be reused in the following
chapters. Finally, the SES/MB approach used in this thesis is considered in the context of
MDE.

Chapter 3 details the SES/MB approach in the context of variant management. Ex-
tensions of the SES and methods for automated variant selection and model generation
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using these extensions are presented. Already known extensions and methods are modified
and new extensions are introduced. Subsequently, it is shown how simulation-based
experiments can be described and automated using the SES/MB approach.

In Chapter 4, shortcomings of an existing SES/MB-based architecture for automated
simulation-based experiments are identified. Based on this, a new adapted SES/MB-
based software architecture is discussed, with which simulation-based experiments can be
described and executed using different target simulators. The components of the software
architecture are discussed in detail and illustrated using the example system introduced in
Chapter 2. With respect to model generation, a distinction is made between a simulator
native and an FMI-based approach. Furthermore, it is shown that the new architecture is
also applicable for non-simulation specific applications.

Chapter 5 is dedicated to the proof of concept for the developed methods and the
software architecture. Use cases for different system classes and different simulators are
presented. Model generation is considered according to both the native approach and the
FMI-based approach.

Chapter 6 summarizes key aspects and findings and provides an outlook for possible
further work.
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In this chapter, aspects of Model Engineering for Simulation (MES) are discussed. Ac-
cording to Zhang et al. [171] the MES includes the methods involved in the full life cycle
of a model for simulation. According to Zeigler et al. [170] the MES defines a model
as an abstract expression of objects of the real or imaginary world, the source system,
and simulation as a model-based technology to imitate the behavior of objects over time.
Accordingly, the full life cycle of a model for simulation is considered first, with an extension
to a Family of Models (FoM). A FoM is according to Zeigler et al. [167] a set of alternative
models from which a candidate model can be selected. Subsequently, some aspects of the
full life cycle of a FoM for simulation will be discussed in more detail. It starts with the
basic interrelationship between formal modeling of dynamic behavior and the execution
of a formal model using a simulator algorithm. Basic system formalisms and modeling
paradigms are discussed. Afterwards, the concept of Model-Driven Engineering (MDE) is
considered in the context of Modeling and Simulation (M&S) and the problem of general
model interfaces is discussed using the example of the Functional Mock-up Interface (FMI).
Subsequently, approaches for modeling model variants of a FoM, the selection of candidate
models and the generation of executable simulation models are discussed. Finally, essential
findings are summarized and the following work steps are roughly derived.

2.1 Life Cycle of a Family of Models for Simulation

In the M&S community different approaches for the life cycle of a model for simulation
were developed. Representative approaches are those of Balci [5], Zhang et al. [171], the
Distributed Simulation Engineering and Execution Process (DSEEP) standard, and the
process model of the Working Group Arbeitsgemeinschaft Simulation (ASIM) according to
Rabe et al. [122]. The approaches reflect essentially identical content. The individual steps
and their results are summarized or detailed differently. Schmidt [135] extends the classic
approaches to a FoM, based on the process model of the ASIM. Schmidt defines a FoM
as a set of models or submodels that share common characteristics. For the purpose of
this thesis, the initial definition of a FoM by Zeigler et al. [167] as well as that by Schmidt
[135] can be unified and extended to:

A FoM is a set of models or submodels that share common characteristics, serve at least
partially common objectives, and from which a candidate model can be selected.

Based on the previously listed work, the life cycle of a FoM for simulation is derived
according to Figure 2.1.
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Figure 2.1: Life cycle of a FoM for simulation (developed based on Zhang et al. [171], the ASIM
process model according to Rabe et al. [122], and Schmidt [135]).
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Analogous to the process model of the ASIM, Figure 2.1 shows the individual steps
and their results. Each result on the right side is subject to the Verification, Validation,
and Accreditation (VV&A) process. The cycles resulting from the VV&A process are not
explicitly shown. Regarding details on VV&A, please refer to the extensive literature on
VV&A, such as in Masys et al. [85], Petty [115], or Chew and Sullivan [32]. At this point,
only some of the special features of the extension to FoM will be discussed. Step 3 already
includes variant modeling, which requires variant management. With the objective of a
clear modeling and the production of well maintainable models, paradigms of the M&S,
like the separation of model structures, model parameters, and dynamic behavior should
be considered already in the step 3 consistently. Step 5 was generalized compared to the
ASIM process model. The result of the implementation in an M&S framework does not
necessarily have to be executable models. It can also be model specifications from which
executable code is generated. Step 6 involves variant selection and generation of one or
more candidate models that are executable in an M&S environment. The loop above
steps 6, 7, and 8 symbolizes the (semi)automated, goal-directed generation, execution and
evaluation of simulations.

Like the VV&A, steps 1 and 2 will not be considered in detail. The focus of this work is
on aspects of steps 3 to 8. These are the variant modeling and implementation associated
with a FoM and the goal-directed selection, generation, and execution (simulation) of
candidate models.

Based on the different types of dynamic system behavior, the next section first discusses
the formal modeling of dynamic behavior (step 4) and the execution by a simulator. The
use of modern M&S frameworks often obscures the fundamental relationship between
formal model and simulator. As a result, the user is often not aware of essential aspects of
step 4.

2.2 Dynamic System Behavior, System Formalisms,
and Modeling Approaches

In the beginning, based on Zeigler et al. [170] a model was defined as an abstract expression
of objects of the real or imaginary world and the world was called the source system.
Further it was said that with the simulation the behavior of objects over time is examined.
Accordingly, in step 4 according to Figure 2.2 the dynamic behavior of a system is to be
formally represented in a model. As shown in Figure 2.2, the system to be modeled always
represents only a section of a larger world (Bossel [17], Zeigler et al. [167], Zeigler et al.
[170], and many others).

The interactions with the environment are modeled with a set of time-dependent influence
quantities X and output quantities Y. The dynamics of the system under consideration is
modeled with a set of time-dependent state variables and a set of functions. The functions
define relations between the sets X, Y, and S. A detailed formal specification of the system
elements and the relations is called a system specification according to Zeigler [162]. A
formal system specification is the basis for implementing the dynamic behavior of a system
on a computer (step 5 in Figure 2.1). With respect to the temporal change of state,
four fundamental dynamic behaviors are distinguished as shown in Figure 2.3 (Zeigler
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Figure 2.2: (a) A dynamic system as part of a world and (b) hierachical system decomposition
according to Schmidt [135], based on Bossel [17] and Zeigler et al. [167].

[162], Zeigler et al. [167], Prähofer [118], Ptolemaeus [119], Lee and Seshia [82], and many
others):

• Differential Equation System Specification (DESS),

• Discrete Time System Specification (DTSS),

• Finite State Machines (FSM), and

• Discrete Event System Specification (DEVS).

According to Prähofer [118] and Zeigler et al. [167], all forms of hybrid system dynamics
can be described by combining the four basic system specifications. As an example
DEV&DESS for the description of combined continuous and discrete event system behavior
is mentioned. The execution of a system specification on a computer requires an appropriate
simulator algorithm. The integration of a system specification and an appropriate execution
algorithm is called a system formalism. In Prähofer [118], Zeigler et al. [167], and Zeigler
et al. [170] a comprehensive presentation of the different system specifications and associated
simulator algorithms is given. Based on the DEVS formalism, Kofman and Junco (Kofman
and Junco [77], Zeigler et al. [170]) introduced the Quantized State System (QSS) formalism
as an alternative to the DESS formalism for describing continuous systems behavior.

As already mentioned, a FoM specifies a set of alternative models from which a candidate
model can be selected. Accordingly, a FoM should be modeled modularly according to the
Multicomponent System Specification (MSS) (Zeigler et al. [167]) and not as a monothic
system. The MSS models a system as a collection of interacting (sub)systems, which may
be structured in a hierarchical manner as shown in Figure 2.2 (b). The MSS distinguishes
between atomic and coupled systems. The latter are also called networks. Atomic
systems define dynamic system behavior based on the basic system specifications or their
combinations. As an example, the dynamic specification of an atomic DEVS system is
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Figure 2.3: System dynamics paradigms according to Prähofer [118].

given (Zeigler et al. [167]). The individual elements of the atomic DEVS specification are
explained in Appendix A.

A coupled system defines components, which may be atomic or coupled systems, and
interface mappings between the components as well as with the input and the output value
set. In the case of directly connected output and input ports the system specification of
a coupled system can be simplified (Zeigler et al. [167]). The individual elements of the
coupled system specification are explained in Appendix A.

According to Vangheluwe [152] the system formalisms are a kind of assembly language,
which more abstract M&S approaches can be mapped on. Already in Zeigler [162] it is
shown how abstract modeling views, such as the activity scanning approach, the process
interaction approach, and the transaction-oriented method or equation-based models, can
be mapped to the system formalisms. The same is true for other abstract M&S paradigms
such as statecharts (Borland and Vangheluwe [16], Risco-Martín et al. [124]) or signal flow-
oriented methods (Cellier and Kofman [28]), and many others such as Petri-Nets, physical
modeling approaches, or VHDL specifications as shown by Wainer [156]. Depending on
the application domain, different modeling paradigms are used. Modeling paradigms are
often implemented as Domain-Specific Language (DSL). One of the first DSL in the field
of M&S was the General Purpose Simulation System (GPSS) developed by Gordon in the
beginning of the 1960s (Gordon [60]). GPSS is based on the transaction-oriented world
view and was designed in particular for operation research problems. However, mapping
a modeling paradigm to a system formalism is often not transparent in today’s DSL or
M&S software environments. Often this results in non-theory conform implementations.

M&S methods are an integral part of systems engineering of complex systems. Systems
engineering is increasingly based on the MDE approach. Accordingly, the next section
discusses interrelationships between the M&S and MDE.
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2.3 Model-Driven Engineering and its Relations to
the M&S Domain

Complex systems, as characterized in Chapter 1, consist of multiple components of different
domains that are closely interrelated. A typical example of such systems are Cyber-
Physical Systems (CPS). A CPS is composed of mechanical, electrical, and other technical
components, as well as components from information technology (CPS Steering Group
[37], Lee and Seshia [82], Sanislav and Miclea [130]). The development and realization
of such complex systems is a technological challenge, which requires more than just a
procedure model, such as the V-model [42]. At relatively the same time, the continuous
use of models from requirements specification to system testing and operation was seen
as a solution approach for systems engineering of complex systems. In this context, it is
important to reuse the models in the individual development phases and to refine them
step by step.

Building on foundational work in systems theory, Wymore [161] developed the general
Model-Based Systems Engineering (MBSE) approach. In the field of automation technology,
the concept of Rapid Control Prototyping (RCP) was developed (Abel and Bollig [1]). The
software engineering community developed the idea of MDE based on the Computer-Aided
Software Engineering from the 1980s.

2.3.1 Introduction to Model-Driven Engineering and the
Model-Driven Architecture

MDE is a methodology that focuses on the use of models as primary elements of system
development (Schmidt [138]). From the MDE approach, the Model-Driven Development
(MDD) method was derived, which further increases the use of models in software develop-
ment by using models to drive the entire development process (Cetinkaya et al. [29]). In
the context of this work, no further distinction is made between MDE and MDD. Both
approaches are based on the same basic principles and pursue analogous objectives. By
refinement of models and by means of transformation methods, final executable code for
the operation phase is to be generated as automatically as possible on the basis of source
models from the requirements specification phase and the conceptual modeling phase.
The implementation of this objective is based on the basic pattern: meta-metamodel,
metamodel and model according to Figure 2.4.

The MDE approach is specified by different standards. The Model-Driven Architecture
(MDA) [101] provides the most general specification of MDE developed by the Object
Management Group (OMG) since 2001. It is an MDE approach commonly used in software
engineering. At the center of MDA is a model, and with the help of transformation
methods new models are created. Thus the key principle of MDE of recursive models is
fulfilled (“Everything is a model“) (Brambilla et al. [18], Brambilla et al. [19]). The aim of
MDA is the separation of functionality and the realization on a specific software platform.
For this purpose, MDA defines three levels of abstraction for models.

• Computation-independent Model (CIM): it focuses on the requirements of a system
and its interrelations with the environment.
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Figure 2.4: Metamodeling pattern in MDE according to Cetinkaya et al. [29].

• Platform-independent Model (PIM): it describes the system structure and its behavior
based on the CIM, and independent from the later realization on a specific platform.

• Platform-specific Model (PSM): it includes technical details for execution on a specific
platform.

The concept of MDA is supported by several other OMG standards. One essential
element is the Unified Modeling Language (UML) [99]. UML is a General Purpose Language
(GPL) and was primarily developed as a modeling language for software systems. The
different diagram types of the UML support modeling on CIM level as well as on PIM
level. To support the transformation of PIM into PSM, the Executable UML (xUML)
was developed based on a subset of the UML (Mellor and Balcer [89]), which defines
an operational semantics. The Foundational UML (fUML), which is favored today, was
developed on the basis of xUML [102].

The UML can be used to model technical systems, but its focus is on modeling software
systems. The UML was adapted for systems engineering of technical systems to the
Systems Modeling Language (SysML) (Alt [2]). Concepts were added, which are necessary
for describing technical systems, specific parts necessary for modeling of software systems
are left away. Since physical systems follow the laws of nature, a new diagram type was
introduced, called Parametric Diagram. In the Parametric Diagram constraints of a system
can be defined and thus the semantics of model elements can be limited (Weilkiens [158],
[141]). Another diagram type introduced in SysML is the Requirement Diagram. In this
diagram requirements for a system and relationships between model elements are described.
Other adaptations in SysML regard further differences between software systems and
physical systems.

2.3.2 The Application of Model-Driven Engineering and the
Model-Driven Architecture in the Field of M&S

The application of MDE principles and the MDA specification in the M&S domain has
already been studied in different works. A relatively recent overview of the state of
the art is provided by Durak [44] or Topçu et al. [145]. They see the application of
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the concept of MDE in simulation engineering in the generation of simulation software
code via the transformation and refinement of models. Their specific goals in using
MDE principles include improving interoperability between distributed simulation systems,
reverse engineering, and modernizing simulation systems. Accordingly, they consider the
transformation from a DSL to a GPL, namely the transformation of a Simulink model to
SysML.

Durak et al. [45] relate the development of an ontology for trajectory simulation to
MDA. The use of MDE principles according to the steps of the life cycle of a model
in the M&S domain is considered for example by Cetinkaya et al. [30] as well as by
Heinzl [68]. In both papers, a prototype of a software framework according to the MDA
specification is described. In Cetinkaya et al. [30] the conceptual modeling is done on the
CIM level using the Business Process Model and Notation (BPMN). The BPMN model
is automatically transformed into DEVS, a formal model on the PIM level. Necessary
refinement steps are not discussed. The BPMN to DEVS transformation is shown in
Cetinkaya et al. [30]. Then, the formal DEVS model, the PIM, is transformed into a
PSM using a specific DEVS simulation library. Cetinkaya et al. [30] analyze several other
works dealing with the transformation from UML to DEVS. The approach of Heinzl [68] is
similar in principle to that of Cetinkaya et al. [30]. For conceptual modeling, Heinzl uses
a specially developed modeling language called Cubes. Using a Model To Model (M2M)
transformation, a PIM is generated from the Cubes-based CIM. The basis of the PIM is
an extended DEVS specification for hybrid systems, which is then translated via Model
To Text (M2T) transformation using a special DEVS library [150] into a MATLAB-based
PSM.

As discussed in the previous subsection, systems engineering of physical systems primarily
uses SysML instead of UML. Kapos et al. [74] and Tsadimas et al. [147] discuss MDA
approaches for transforming SysML models into executable DEVS models. Further works
are analyzed by Blas et al. [12], that address the transformation of executable simulation
models based on platform-independent, formal DEVS models. However, according to Blas
et al., the actually platform-independent formal modeling based on DEVS is often influenced
by special circumstances of the implementation level, i.e. the M&S environment for which
executable models are to be generated. For this reason, a universal representation of DEVS
models in the form of a metamodel-based definition of the DEVS system specification
using UML and the Object Constraint Language (OCL) is proposed by Blas et al.. The
universal representation is seen as the basis for M2M transformations into executable,
platform-dependent DEVS models for different M&S environments. It has to be mentioned
that the universal representation is only valid for Classic DEVS with ports according to
Zeigler et al. [167].

In systems engineering of physical systems, like CPS, there is a crucial difference to the
work analyzed before. A CPS consists of complex subsystems of different technical domains.
According to Bertram [11], the SysML is used as a cross-domain GPL in the context of
requirements specification and conceptual modeling to create a shared system model at
CIM level. Some subsystems are also detailed down to PIM level using SysML. M&S in the
domain of individual technical spaces is done with DSLs, as shown schematically in Figure
2.5. The DSLs have often been established in the respective technical spaces for decades
and have only been replaced to a limited extent by multiphysical DSLs, such as Modelica
[91]. Model transformations and model refinements from the SysML-based system model
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into the DSLs of the technical spaces are mostly done manually. Furthermore, in practice
there are direct interrelations between models of the technical spaces, indicated by the
dashed lines. As shown in Figure 2.5, the implementation of the MDE principles by means
of metamodels and model transformations is extremely complex due to the large number
of DSLs involved in the development process, especially since the construction of an overall
simulation requires bidirectional transformations between the GPL and the DSLs or, in
general, transformations to a system formalism as DEVS. An approach for the translation
of SysML models into the discrete event simulation software Arena [125] is presented by
Batarseh and McGinnis [9].
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Figure 2.5: Interrelationships between M&S spaces in the engineering of complex technical
systems. The M&S tools given are only selected examples to demonstrate the variety.
M&S cross-relationships (dashed lines) between the technical spaces are only indicated
by two examples. References for the mentioned softwares: Adams [69], VHDL [80],
FluidSim [4], Simulink [87], Modelica [91], Aerospace Blks. [88], Opnet [104].

In addition to the model-driven development process, one objective of MDE is the
reuse of models. Due to the cooperation of different technical spaces in the engineering
of complex technical systems, the problem of designing an overall simulation quickly
follows when using different tools. As a solution to avoid reimplementations, the FMI
was developed as a general interface for simulation models. In the sense of the three
model levels of the MDA, FMI defines a standard on PIM level. This makes it possible to
generate different PSMs automatically on the basis of FMI. The problem of the automated
transformation from the system model to the DSL is not solved by FMI. The fundamentals
of FMI will be discussed in the next section.
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2.4 The Functional Mock-up Interface as General
M&S Interface

First, the problem of a general M&S interface is discussed. Then, in separate subsections,
individual aspects of the FMI as a standard for a general M&S interface are discussed.

2.4.1 Problem Definition of a General Model Interface

Model-driven development of complex technical systems requires developing complex
models from different domains, testing them individually and validating them as an overall
model. Plateaux et al. [117] emphasize the importance of early testing of all design layers
of a model. Van der Auweraer et al. [151] propagate the integration of different steps of a
system design into a holistic industrial design process and thus the integration of models
of subsystems from different domains. The implementation of the required holistic design
process poses problems, which Gomes et al. [59] identify as follows.

• Simulation models are mostly developed in domain-specific M&S environments. Every
environment has a specific user interface for creation of models and is optimized
for the needs of a domain. The interface for saving and opening models is software
specific as well. The interchangeability of models between different M&S tools is
therefore not guaranteed.

• Intellectual property: System components are developed at great expense in terms
of time and money. Therefore, the developer of a component often does not provide
the entire model to the customer in readable form, but only the interface and
encapsulated code.

• Model, software, hardware, and human-in-the-loop tests: In holistic development,
even small modifications in subsystems and interactions with humans must be
successively tested locally and in the overall context.

A general interface is necessary for M&S of cross-domain systems. To protect intellectual
property, the interface should consider data encapsulation mechanisms so that the imple-
mentation of the model is not exposed. Furthermore, often the modeling power of a DSL
is needed for an application, but when supporting a general model interface the simulation
can also be executed with other simulators. Running a model with different simulators
can be used to test operational validity. According to Sargent [132], operational validation
comprises the simulation model and the executing simulator. Junghanns and Blochwitz
[71] refer to the necessity to test simulation models with different simulators, such as
using the DASSL (Petzold [116]) algorithm, with the argument: “DASSL of tool A differs
from DASSL of tool B, even if the same name is used. Solvers contain heuristics, which
are optimized with respect to the models which are most commonly simulated.“ Further
arguments for testing operational validity through a general model interface are given in
Pawletta and Folkerts [108]. It is not the core of this thesis to develop methods for testing
the operational validity of simulators. However, the general model interface in combination
with the methods to be developed in this thesis offer an approach to investigate the
operational validity of simulators in practice.
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So far, the problem of a general interface has been considered from the point of view of
model exchange between simulators. Using model exchange, a cross-domain system can
be modeled with different DSLs, the individual models can be integrated into an overall
model, and this can be executed on a simulator. This approach corresponds to class 1 of
the general classification of M&S approaches in Figure 1.1 in Chapter 1. Another approach
follows from class 2 of the general classification, which is called co-simulation (Gomes
et al. [59]). In a co-simulation, simulators running domain-specific models are coupled and
coordinated via a master algorithm. The simulators and their models are considered in
a co-simulation as a “black box“ with a dynamic behavior, which provides an input and
output interface.

For some domains there are de-facto interface standards. However, a general purpose
standard for an M&S interface is desirable. For physically oriented technical systems,
the FMI [92] has been defined as such a standard and is extensively used in practice. In
the next subsections, FMI is discussed in more detail. First, the development of FMI is
reviewed. Then FMI is discussed as a basis for model exchange and for co-simulation,
although the method of co-simulation is not in the focus of this work. Finally, an outlook
on a new FMI standard is given, which is interesting for further work.

2.4.2 Development and Overview of the Functional Mock-up
Interface

The introduced challenges lead to the development of the DSblock interface by Otter (Otter
[106], Otter and Elmqvist [107]). DSblock is the abbreviation for Dynamic System block. It
is an open and general interface of models defined in the Fortran77 programming language.
This interface is realized with input-output blocks, which represent the considered system.
Thus a DSblock describes a general nonlinear dynamic system in a neutral way using
ordinary differential equations or differential-algebraic equations. A DSblock can be
parameterized and initial conditions can be set.

The latest definition of the DSblock model interface is version 4.0, which solves several
challenges. The DSblock definition is related to the Modelica language, a hierarchical
structure of DSblock models is supported, and the limitation to input-output blocks is
cancelled. The target language of a DSblock is changed to C++. The version 4.0 of
DSblock can be seen as predecessor of the FMI definition, which was released in 2010.

According to Blochwitz et al. [13] tool independent languages need to easily support
model exchange between simulation tools. As previously discussed simulation tools are
specialized for different domains and a complex system can be composed of a variety of
model components. These components can be developed by different companies with
special knowledge in a field. Thus the exchange of model components as well as the
know-how protection is an essential task.

Next to proprietary interfaces of M&S tools FMI was developed as open and tool inde-
pendent standard with the aim of support for model exchange between different simulation
tools as well as co-simulation. The focus is on time-continuous and physical systems. The
FMI standard is managed as Modelica Association Project and was continuously developed.
In 2014 version 2.0 of the standard was released as discussed by Blochwitz et al. [14]. It
combines the FMI for Model Exchange and the FMI for Co-Simulation and introduces
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optional features. Very recently the FMI 3.0 standard is discussed (Junghanns et al. [72]),
which extends the FMI 2.0 standard with additional functionality. In this work the FMI
standard in the version 2.0 is used.

A model implementing the FMI is called Functional Mock-up Unit (FMU). An FMU is
a zipped file with the file extension fmu. It comprises of the description schema in form
of an Extensible Markup Language (XML) file modelDescription.xml, the C source code
and/or static link libraries in binary form, and optional further data like documentation
or icon. Static link libraries can be Dynamic Link Library (DLL) files or shared objects
depending on the Operating System (OS). This is clarified in Figure 2.6. In case of FMI
for co-simulation additionally the solver algorithm is part of the FMU.

Figure 2.6: The structure of an FMU.

The FMI enables a simulator to generate executable simulation code from the FMU.
Therefore there are a set of functions defined for FMI implemented in the target simulator.
The model description stored in the XML file describes the interface of the FMU and
contains the definition of all exposed variables of the FMU. The XML file can be read with
functions of a simulation tool’s programming language. The XML file specifies whether
the FMU is defined for model exchange or for co-simulation and provides details on the
model structure. The C-code maps the interface of an FMU and consists of a set of header
files which define the C-types and C-interfaces. The FMU can be shipped with the C
source code. In case the source code of an FMU is not integrated, the libraries are given
in the FMU.

Starting in the automotive industry a number of tools from different fields support FMI
[93]. There are domain-specific M&S tools as well as general-purpose M&S tools. Chen
et al. pronounce in [31] the need for a generic implementation of FMI in Modelica-based
M&S tools. The Modelica Association Project FMI provides tools to check FMUs and
libraries for the implementation of the support for FMI in simulation tools, such as FMPy
[27], the FMU Compliance Checker [95], the FMU Software Development Kit (SDK) [121],
the FMI Library [94], or the FMI++ library by Widl et al. [159].

FMI is continuously further developed to this day. However, FMI is developed with
the focus on time-continuous systems, whereas discrete time systems are neglected as
pronounced by Widl et al. [160]. Franke et al. [54] describe the challenges and the progress
of extending FMI for discrete time especially for control applications. As Müller and Widl
in [97] and [98] point out, another challenge is the usage of FMI components in discrete
event systems. For the M&S of complex CPS, FMI is of great interest despite the still
existing limitations, since CPS contain a high number of time-continuous subsystems from
different domains.
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2.4.3 The Functional Mock-up Interface for Model Exchange

The intention of FMI for Model Exchange is the reuse of component models in different
simulation tools. A component model is described by differential, algebraic, and discrete
equations with time and state events. A M&S environment can generate C-code of a
dynamic system model, which can be imported in other M&S tools. Due to the usage of C
source code FMUs can also be used for simulation in embedded systems on microprocessors.
When FMUs for model exchange are used, the FMUs are embedded in a target model and
are simulated with a simulator of the target simulation environment. The models do not
integrate any solvers. This is illustrated in Figure 2.7 and 2.8.

M&S

tool

solver

FMU

Figure 2.7: Relationship between FMUs for model exchange and the executing M&S environment.

M&S tool with solver

FMU

model

Figure 2.8: Structure of a simulation model with two domain-specific model components (DSL
models) and two FMUs for model exchange in a target M&S environment.

2.4.4 The Functional Mock-up Interface for Co-Simulation

FMUs for co-simulation additionally contain the solution algorithms necessary to simulate
the model. FMI for co-simulation is organized in a master-slave concept where subproblems
are described by the slaves and the master organizes the simulation. The FMUs represent
the slaves. An M&S tool needs to implement a master algorithm, which coordinates the
simulation and the exchange of data between the FMUs. During simulation every FMU
is solved by the embedded solver and data are exchanged between the FMUs at discrete
communication points. Bastian et al. present concepts for a master algorithm in [8]. This
general principle is illustrated in Figure 2.9.

M&S

tool solver

FMU

Figure 2.9: Relationship between FMUs for co-simulation and an M&S master tool.
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2.4.5 System Structure and Parameterization Standard

A complex system is often modeled in a modular manner as a network structure as
discussed in Section 2.2 and illustrated in Figure 2.8. Köhler points out in [78] that the
FMI standard lacks:

• the possibility to separate the parameter data from FMUs,

• change parameters for an FMU independently from the simulation environment,

• the mapping of parameters in a network of FMUs,

• store a network of FMUs independent of the tool.

Therefore the new standard System Structure & Parameterization (SSP) as companion
standard for the FMI standard was defined, which is managed as Modelica Association
Project. The SSP standard defines a package to store FMUs, their connection structure,
and their parameterizations in a zipped package independent of an M&S tool. Thus all
system structures and all parameterizations are encoded in one package. An SSP package
consists of the components as shown in Figure 2.10.

Figure 2.10: Components of an SSP package.

One part of an SSP is the System Structure Definition (SSD). In the SSD the connections
of the FMUs with optional hierarchical subsystems in the SSP package are defined. Thus
multiple SSDs are needed to specify several variants encoded in an SSP. The exchange of
parameter data and their mapping to FMUs is included in the SSP. Since all variants –
the structures and the parameter configurations – are pre-defined in the SSP, the SSP can
be classified as 150% model approach. The 150% model approach (Alt [2]) is discussed in
detail in Section 2.5.2. The SSP companion standard was adopted and released at the
Modelica Conference in March 2019 and was only recently included in non-commercial
simulation tools. Therefore the SSP standard is not considered in this work.

2.5 Variant Modeling, Selection, and Model
Generation

Variant modeling and selection are broad terms in software engineering. Model engineering
of a FoM for simulation is closely related to the modeling of system variability in software
engineering with respect to variant modeling and selection. System variability is defined
as the ability of a system to be configurable, extendable, or adaptable depending on its
purpose and objective. Model generation means in this context to generate executable
simulation models for selected model variants. Schmidt [135] summarizes the steps 2 to 6
of the life cycle of a FoM for simulation in Figure 2.1 under the term variant management.
Figure 2.1 also shows that there is a close correlation between variant management and the
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simulation of model variants and their evaluation. As already motivated in Chapter 1, the
investigation of complex systems requires a (semi)automated derivation of model variants
and model generation, since the enormous effort to create and test individual variants
manually is hardly manageable. According to Schaefer et al. [134], a central variant
specification and automated variant selection and evaluation reduces the maintenance
effort of complex models, since modifications are specified centrally and are automatically
included in model selection and model generation.

In this section, established approaches for modeling model variants, the selection of
candidate models, and the generation of executable simulation models are discussed. For a
pragmatic explanation of selected aspects, a minimal case study is introduced first, which
will be referred to again in later chapters.

2.5.1 Introduction of a Minimal Case Study of a Family of
Models

The case study presented in this section is used throughout this work to illustrate the
methods which are presented and introduced. The case study describes a feedback control
system with optional feedforward control. It is modeled in a signal flow-oriented manner
using transfer functions to describe the behavior of the components in frequency domain.
Controlled variables in a feedback control system are usually influenced by disturbances.
A common approach for minimizing the influence of predictable disturbances is adding a
feedforward control.

In the feedback control system a PID controller controls a process unit with a PT1
behavior. A disturbance with a PT1 behavior affects the output of the process unit.
The FoM described in this case study includes two structure variants, either with a
feedforward control or without a feedforward control. For every structure variant a range
of different parameters can be applied to the PID controller. Figure 2.11 depicts a schematic
representation of the application.

feedback

controller PID
process unit

GSu(s)   PT1

disturbance

GSz(s)   PT1

feedforward

controller

GSt(s)

disturbance

-

- + +

+
controlled

variable

setpoint

manipulated

variable

PID= {...}

Figure 2.11: Structure of the feedback control system with optional feedforward control.

The system’s behavior follows the PT1 transfer function in Equation 2.1 and the step-
shaped disturbance affects the output of the process unit with a PT1 behavior according
to Equation 2.2. The optional feedforward control is realized by subtracting the disturbing
signal calculated by Equation 2.3 from the manipulated variable.

GSu(s) = 1
20 · s+1 (2.1)
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GSz(s) = 1
10 · s+1 (2.2)

GSt(s) = GSz(s)
GSu(s) = 20 · s+1

10 · s+1 (2.3)

The control objectives are to ensure that overshoot does not exceed a certain value and
to maintain a certain settling time. The goal is to find the best control structure that
reaches the control goals. In this example, the best control structure means the most
minimal structure possible with controller parameters that achieve the control objective.

2.5.2 Approaches from Software Engineering

Based on the definition of a FoM given in Section 2.1, a FoM has many relations to a
Software Product Line (SPL). SPL is the mostly used approach in software engineering for
modeling the variability of a software system. The methods and tools used to develop SPLs
are referred to as Software Product Line Engineering (SPLE). In an SPL the commonalities
and differences between software products are specified (Clements and Northrop [34]).
The aim is to guide the structure, reuse, and describe variations across all phases of the
software lifecycle (Apel et al. [3]), to reduce time to market of products, and to increase
product quality (Schaefer et al. [134]). Each feature of a product is a characteristic
or end-user-visible behavior of a software system. Thus, the modeling of variability is
necessary.

Section 2.2 discussed different levels of model abstraction when introducing MDE and
MDA. Pawletta et al. [114] as well as Jafer et al. [70] state that variant or variability
modeling can take place at different abstraction levels. For this purpose, they refer to
the Meta-Object Facility (MOF) hierarchy [100], which has strong relations to the model
classes defined by the MDA. The MOF hierarchy distinguishes four levels of abstraction,
called M0 to M3. M0 describes a system in reality and M1 a model of the system in a
modeling language, while the abstraction level M2 defines a metamodel of the modeling
language. The abstraction level M3 is the MOF. Approaches described next are categorized
according to this hierarchy.

Feature Modeling and 150% Modeling A widely used modeling approach is Feature
Modeling as described in Kang et al. [73], Deursen and Klint [43], or Apel et al. [3]. Feature
Models (FMs) were introduced as part of the Feature-Oriented Domain Analysis and are
usually developed by experts of a domain. The developers need to know which features
are combinable and which features need the presence of other features. So the validity of
feature selections must be defined. Although this can be done using a list, in linguistic
form, or using modeling formalisms such as UML, a graphical representation using feature
diagrams has proved to be the most clearly arranged way (Apel et al. [3]). The semantics
are specified by translation into propositional logic. The feature diagrams then define the
FM as a hierarchy of features and constraints. The relations between features in FMs
can be mandatory, optional, alternative, or or. Additional constraints can be defined with
cross-tree constraints.

Figure 2.12 shows an example of the specification of the variants of the simple control
system introduced in Section 2.5.1 in the form of an FM. For the PID controller alternatively
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a P controller can be chosen. Both can be combined with the two structural variants
discussed. The system is divided into a basic feedback control system, a disturbance, and an
optional feedforward control. The basic feedback control system consists of the mandatory
components setpoint, feedback, feedback controller, and the transfer function representing
a process unit. In this case study a step shaped disturbance transformed by a transfer
function is described. For adding this disturbance to the basic feedback control system an
add feature is needed. The optional feature feedforward control needs a transfer function
and a subtract feature.

simulation model

setpoint feedback
feedback

controller

P PID

Figure 2.12: FM for specification of variants of a simple control system.

As shown in the example in Figure 2.12, FMs can be used very well to specify com-
positions of components on network level and parameterization variants of components.
Coupling relations between components and dynamic system behavior cannot be described
with FMs. Thus, FMs are only conditionally suitable for the specification of the design of
a FoM according to Step 3 in Figure 2.1. The modeling with FMs corresponds according
to the MOF hierarchy to the abstraction level M2.

In M&S practice, FMs are often combined with the 150% modeling approach (Alt [2],
Weißleder and Lackner [157]). As mentioned before, a 150% model is specified with a DSL
and represents all model variants of a FoM at M1 level. Variation points are introduced to
model the choices. The variation points have a parameter over which the selection can be
controlled (Grönniger et al. [62], Kolassa et al. [79], Gutekunst and Weiland [63]). The
parameters of the variation points are used to define links between the FM and the 150%
model. Figure 2.13 shows a 150% model of the feedback control case study, specified with
a DSL as a signal flow graph. Here, the blocks procUnitSys, tfDist, and tfFeedforward
represent the transfer functions mentioned in Section 2.5.1, and ctrlPIDSys represents
the PID controller. Components of the basic control system mentioned in Figure 2.12
are highlighted in red in Figure 2.13, components of the disturbance in yellow and the
components of the feedforward in green. The switch block with gray background defines a
variation point between model structures in the 150% model.

The FM is used to select one specific system variant. The selection is done by setting
the parameters of the variation points of the 150% model in the FM. This approach is
classified as a subtractive way of model generation, because parts are taken away from
the maximum overall 150% model. Transformation methods in the sense of MDA are
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Figure 2.13: 150% model of the introduced control system.

not required, because only a PIM to PSM translation is performed in the domain-specific
M&S environment.

An implementation of FMs in the context of software engineering is the software
pure::variants [120]. This software can be used in combination with a simulation tool such
as MATLAB/Simulink, OpenModelica, or Dymola. MATLAB/Simulink also provides an
integrated variant manager, which follows the selection from a 150% model approach [86].

Other Approaches An extension of feature-oriented programming is the delta modeling
approach like in Schaefer [133] or Clarke et al. [33]. A core product and deltas of this
core product of a product line are identified, where the deltas specify modifications of
the core product. Rules for these deltas specify the need of modifications for a feature
configuration. This approach can be used for automated product derivation in SPLE as
discussed in Schaefer et al. in [134]. There are several approaches how to gain a consistent
model.

Müller et al. uses a SysML-based approach in [96] to describe the variants of a system
at M2 level. Thereby SysML-based components reference simulation component models in
a simulation library.

Furthermore, approaches exist to extend SysML by dynamic descriptive language
elements (Reichwein et al. [123]), so that SysML can be used to specify model structures,
model parameterizations as well as dynamic behavior.

Pros and Cons A disadvantage of feature-oriented modeling is the lack of concepts for
specifying coupling relationships between components, which means that system structures
in the sense of M&S cannot be modeled completely. The connection of FMs with 150%
models or delta models becomes unclear with complex models and complicates the model
maintenance. The workload for creating and testing an overall model with all model
variants according to the 150% approach corresponds to the workload of testing with
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single models. The advantage is the centralized incorporation of model changes and
the elimination of transformation methods in the sense of MDE/MDA for generating
an executable simulation model. Thus, the approach can be used quickly in practice.
However, approaches for solving the central problem of M&S of complex technical systems,
to generate an overall simulation model on the basis of partial models of different DSLs,
are not known.

Linking SysML-based components with component models in a simulation library is a
good approach from the M&S point of view. The system description is clearly separated
from the behavior, which is coded in the simulation components in a simulation library.
The components are coded in a specialized DSL. A transformation method then generates
a simulation model. Thus, principles of MDE and MDA are supported. It should be
emphasized that in the approach the mapping from SysML components to components in
the simulation library must be done depending on the simulation library used.

The extension of SysML by dynamic descriptive language elements seems obvious from
the software engineering point of view and supports the principles of MDE and MDA.
However, this approach contradicts previous experiences in the technically oriented M&S
domain, which is characterized by specialized DSLs and simulation tools of the various
technical spaces and conditioned the development of FMI according to Section 2.4.

2.5.3 Classic System Entity Structure and Model Base
Approach

Analogous to approaches coming from software engineering the systems theory community
introduced methods for platform-independent variability modeling and model selection
with subsequent platform-dependent model generation. Zeigler [163] developed with the
System Entity Structure (SES) one of the first high level approaches for variability modeling
in the context of M&S problems. The SES is a structural knowledge representation scheme
to specify decomposition, taxonomy, and coupling relations of a multifaceted system.

Basics of the SES/MB Approach According to the definition of a FoM, an SES describes
a set of modular, hierarchical system structures. From the point of view of data structures,
an SES is a tree structure. The tree is composed of four types of nodes interconnected by
edges. One type of nodes are entity nodes. Entities describe real or imaginary objects. The
other three node types describe relations between entities and are referred to collectively
as descriptive nodes. In the context of M&S leaf entity nodes can be linked to basic
models organized in a library called Model Base (MB). Moreover, entity nodes can specify
parameter settings for referenced basic models. A basic model is an encapsulated dynamic
system with a defined input and output interface. A basic system can be any atomic or
coupled model regarding to the dynamic system specifications in Section 2.2, if the basic
model satisfies the closure under coupling property as defined in Zeigler et al. [167].

According to Rozenblit and Zeigler [128], Zeigler et al. [167], or Zeigler and Hammonds
[164], an SES can define coupling relations between entities and specify rules by which an
SES can be pruned. A pruned SES that describes a concrete system structure including
parameterization of referenced basic systems is called a Pruned Entity Structure (PES).
The pruning of an SES is in the sense of MDE/MDA a transformation method, which is
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called pruning. The pruning method is used to select model variants.

The SES/MB framework according to Zeigler et al. [167] describes the integration of an
SES with an MB. The SES/MB framework defines another transformation method, which
is called build here following Pawletta et al. [114]. With the build method, a complete
simulation model is generated using the PES and basic models from the MB. The resulting
model is an optimal taylored model in contrast to 150% models. In the terminology of
variability modeling this kind of model generation is an additive approach. Figure 2.14
shows the approach to M&S based on the classic SES/MB framework.

Figure 2.14: Procedure model and SES/MB framework modified based on Zeigler et al. [167].

Based on the classic SES/MB framework, various M&S tools have been implemented.
Examples are the Java-based MS4Me environment by Zeigler and Sarjoughian [165] or
the MATLAB/Simulink-based prototypes by Hagendorf and Pawletta [65] and Schmidt
[135]. The implementations are based on simulator-independent SES models and simulator-
specific MBs for model generation. Consequently, the generated executable models are
simulator-specific PSMs.

The SES/MB Approach in Context of MDE/MDA According to Zeigler and Ham-
monds [164], the SES is an ontology, a language with syntax and semantics to represent
declarative knowledge. It is suitable for describing system configurations for different
application domains. As Zeigler and Hammonds describe in [164] the development of the
UML in the field of software engineering influenced the developers of ontologies and vice
versa. A language to represent ontologies is the Web Ontology Language (OWL). According
to the World Wide Web Consortium (W3C) [155] it is designed to represent knowledge
about things, group of things, and relations between things. Zeigler and Hammonds
compare the OWL with the SES in [164]. Like the OWL, the UML is primarily used
for platform-independent specifications in software engineering. The main application
area of SES is the application-independent specification of modular-hierarchical system
configurations. Thus the SES corresponds to the UML and OWL. In analogy to UML and
OWL, the SES ontology is assigned to the M3 level of the MOF hierarchy.
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In the context of this work, an SES can be used to describe all possible model con-
figurations of a FoM with respect to the different model structures and component
parameterizations. Zeigler and Hammonds describe in [164] the relationship between the
representation of systems as UML diagram and an SES. The most obvious difference is the
representation of the SES as tree structure, where UML uses general graph structures to
express objects and their relations. Durak et al. propagate in [46] the SES/MB framework
as an MDE approach in the technical systems simulation domain.

According to Gorton [61] any language can be made MDA compatible: “The MOF also
provides mechanisms to determine how any model defined in a modeling language can be
serialized into XML documents or be represented by programmable interfaces. Any existing
modeling language can be made MDA compatible by creating a MOF representation of the
language.“ An XML representation is defined for the SES, such as described by Zeigler and
Hammonds [164] and by Zeigler and Sarjoughian [165], thus fulfilling the key requirement
of interchangeability of models according to the MDA.

The transformation method pruning is used to select a concrete model configuration from
an SES in the form of a PES. A PES specifies the selected variant platform-independently
in the SES language. From the point of view of the MOF hierarchy, a PES represents a
model of the M1 level.

With the transformation method build, a simulation model is generated on the basis of
a PES for a selected model configuration using basic models of an MB. The generated
model is a complete simulation model which represents the model structure, the model
dynamics, and the model parameterization. Depending on the basic models, the generated
simulation model is according to the MDA model classification:

• a PSM based on a general programming language or a simulator-specific DSL or

• a PIM based on a formal or simulator-independent specification, which is transformed
into a PSM by transformation methods of the respective M&S environment used.

As discussed in the previous paragraph, previous implementations of the SES/MB
framework use only simulator-specific MBs.

Pros and Cons The SES/MB approach supports a platform-independent specification
of model configurations with respect to the possible model structures and component
parameterizations. The modeling of the dynamic behavior takes place in the form of basic
models, which are organized in an MB. Two transformation methods are used to generate
customized models of selected model configurations. All previous implementations of the
SES/MB framework are based on simulator-specific MBs. The primary requirement for
the engineering of complex systems, such as CPS, to generate complex overall models
using submodels of different DSLs, cannot be implemented in this way.

2.6 Summary

Starting from the definition of a FoM, a life cycle model for FoMs was derived based
on generally known life cycle models of M&S. Subsequently, basics of formal modeling
of dynamic system behavior and the fundamental relation between model and simulator
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were considered. No FoM specific requirements followed from the consideration. The
subsequent analysis of basic principles of MDE and the associated MDA of software
engineering in the context of M&S of complex technical systems revealed special features of
system development. This follows from the multiplicity and technical differentiation of the
technical spaces involved. In the context of the requirement specification, the system and
data analysis, and partly with the conceptual modeling, one works on basis of a common
system model as in software engineering. Documentation and development results also
flow into the central system model. The detailed development in the individual technical
spaces, however, is largely carried out using different methods and software tools. With
respect to the M&S domain, different simulation systems with specific DSLs are used. The
classical implementation of the MDE/MDA principles would require an enormous amount
of transformation methods.

For the realization of domain-spanning overall simulation models on the basis of sub-
models of different technical spaces, the M&S community developed:

• multiphysics modeling languages like Modelica as a replacement for specific DSLs
and

• general model interfaces, such as FMI, for the exchange of models between different
simulators or for the coupling of different simulators (co-simulation).

Finally, FoM-specific aspects such as the modeling of different model configurations and
the most automatic possible derivation of candidate models with subsequent generation of
executable simulation models were considered. Here it became apparent that the methods
adapted from software engineering are hardly suitable for solving the challenges of M&S
of complex technical systems.

Furthermore, the classical SES/MB framework was considered. This is an approach that
has already been widely discussed in the M&S domain in the context of FoMs and the
principles of MDE. While the SES concept fulfills the basic requirements of MDE, such as
platform independence and consistency from conceptual modeling to model generation of
executable simulation models, deficiencies were identified in the MB concept. All previous
approaches and implementations of the SES/MB framework are based on simulator-specific
MBs and thus on simulator-specific transformation methods for model generation. In order
to generate complex overall models using submodels of different DSLs, the submodels
must support a general interface and be organized as basic models in an MB. This concept
will be investigated in this thesis using FMI for model exchange and an extended SES/MB
architecture. Besides the conception of a general transformation method for the generation
of FMI-based simulation models for different simulators, simulator-specific considerations
for model generation as well as for the automation of goal-oriented simulation studies for
FoMs will be made.
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3 Extensions to SES/MB-based Modeling
and Linking With Simulation
Experiments

Starting from the basics of the previously introduced classic System Entity Structure
(SES)/Model Base (MB) framework as a high level approach for Modeling and Simulation
(M&S) of a Family of Models (FoM), this chapter starts with the consideration of further
details of the classic framework. Then existing and newly developed extensions to SES/MB-
based modeling are discussed. The considered extensions refer to modeling with the SES
and operations for processing of an SES with the goal of an automated selection of candidate
models of a FoM. Aspects of SES/MB-based modeling in the context of simulation-based
experiments are then discussed. The concept of the experimental frame as an interface of a
model to simulation experiments and the structural design of simulation-based experiments
are discussed.

3.1 The Classic SES/MB Approach in More Detail

In Section 2.5.3 the SES/MB framework with its fundamental components and operations
was discussed. An overview regarding the SES/MB framework was already given in the
introduction in Figure 1.2. In the following, based on Zeigler et al. [167] and Zeigler and
Hammonds [164], some basic aspects are discussed in more detail.

The SES was introduced in Section 2.5.3 as a tree structure consisting of entity nodes
and descriptive nodes. In the context of M&S, entity nodes represent atomic or coupled
systems, while descriptive nodes describe relationships between entities. Accordingly, the
root node and leaf nodes are always entity nodes. The referencing of models in an MB
by entity nodes has already been discussed in Section 2.5.3. Furthermore, entity nodes
can define attributes, called attached variables, to specify properties of models, such as
parameter settings. At this point, the three types of descriptive nodes and the axioms for
the construction of an SES shall be considered in more detail.

Aspect nodes describe how entity nodes can be decomposed into partial entities, whereas
the taxonomy of an entity is described by specialization nodes. Thus, aspect nodes describe
a has-a relationship, whereas specialization nodes describe an is-a relationship. Like aspect
nodes multi-aspect nodes describe the decomposition of an entity, but with the special
property that all child nodes are of the same type of entity. Multi-aspect nodes have an
attribute, called Number of Replications (NumRep), that specifies the number of children
to be created when pruning an SES. Moreover, aspect nodes and multi-aspect nodes can
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define relationships between the parent of the node and the children in an attribute. A
coupling relation in the sense of modular-hierarchical model structures is defined by two
pairs, each consisting of an entity and a port name, such as (source entity, source port,
sink entity, sink port). No special attribute is defined for specializations in the classic
framework. However, selection constraints can be specified. This is done with a special
edge type between selection-dependent specializations.

In order to build the tree structure semantically correctly, axioms for the SES are defined.
The types of the nodes in a tree path have to follow the axiom alternating mode. Every
entity node has to be followed by a descriptive node and vice versa. A strict hierarchy
is needed. In every path of the tree, a name of a node is allowed to occur only once. If
nodes in different paths have the same name, they need to have the same attributes and
isomorphic partial trees. This is called uniformity and it implies that the partial tree below
nodes with the same name in an SES does not have to be repeated. Nodes with the same
father, called sibling nodes, have to be valid brothers, meaning that sibling nodes must
not have the same name. The axiom of attached variables implies that a node must not
have variables (attributes) of the same name. The axiom of inheritance implies, that when
pruning an SES, the parent and the child of a specialization node combine their attributes.
If parent and child have the same attributes, the parent’s attributes are overwritten with
the child’s attributes and their values.

With the three types of descriptive nodes and the selection constraints or semantic
conditions, different model variants can be described in different ways with respect to
the model structure and the model parameterization. In terms of variability modeling,
descriptive nodes of the type specialization and multi-aspect as well as siblings of aspect
nodes define variation points. The selection of a model variant is done with the pruning
operation, as introduced in Section 2.5.3 in principle. Zeigler and Sarjoughian discuss in
[165] different pruning approaches. The pruning can be done interactively or automated.
When doing the pruning interactively the user needs to have the knowledge on how to find
decisions at the variation points. Pruning an SES interactively means to manually decide
at each variation point to find a certain system configuration. This is a time intensive and
error-prone process which is hard to carry out (Zeigler and Sarjoughian [165]). Thus, the
automation of the pruning process is desirable. One approach for automated pruning is
the enumerative pruning as described by Zeigler and Sarjoughian in [165]. When following
the approach of enumerative pruning all Pruned Entity Structures (PES) coded in the
SES are produced once. Due to the high number of variants in engineering problems the
interactive pruning is often not feasible, while enumerative pruning can be neglected since
this approach is not goal-directed. A goal-directed automation of the pruning and model
building process requires an extension of the SES/MB approach. Knowledge on how to
find decisions to resolve the variation points during pruning needs to be defined before
starting the pruning process. In [165] the suggestion is made by Zeigler and Sarjoughian
to specify rules for pruning in a script. Another approach is the extension of the SES with
features to specify all knowledge necessary for automatic pruning in the SES as suggested
by Pawletta et al. in [111]. The extended SES approach and an algorithm for the pruning
operation are described in detail in the next sections. Regardless of the pruning approach,
the result of pruning is a PES or a set of PES, where each PES describes the structure
and parameterization of a concrete candidate model of a FoM.

The SES/MB framework combines the concept of SES with an MB, such as described
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by Rozenblit and Huang [126], Rozenblit and Zeigler [128], or by Zeigler et al. [166]. The
transformation method build already explained in Section 2.5.3 generates an executable
simulation model from the information of a PES using basic models of the MB. The
reference to the basic models in the MB is made via information coded in the leaf nodes
of the PES. Furthermore, the leaf nodes can define concrete parameter settings of the
basic models, which are determined when pruning the SES. Similarly, when pruning the
SES, coupling information from aspect and multi-aspect nodes is transferred to the PES.
Finally, it should be noted again that the SES and PES are simulator-independent, while
previous implementations of the MB are simulator-specific.

3.2 Extensions of the Classic SES/MB Approach

The SES modeling approach has been continuously developed since its introduction by
Zeigler in the 1980s (Zeigler et al. [167], Pawletta et al. [111], Pawletta et al. [110], Zeigler
and Hammonds [164], Zeigler and Sarjoughian [165], Santucci et al. [131], Schmidt and
Pawletta [136], Schwatinski and Pawletta [139], Pawletta et al. [109]). Schmidt introduced
in [135] an architecture for automated simulation-based experiments based on the SES/MB
framework. With the architecture Schmidt [135] developed a method of an automated,
goal-directed selection of candidate models from an SES and a method for the generation
of simulation models based on it. The model generation method is simulator-specific and
the specification of the SES is also partially simulator-dependent. The objective of this
thesis is to develop a largely simulator-independent SES/MB architecture, building on
Schmidt’s [135] architecture. Accordingly, some extensions to the SES/MB approach are
discussed in the following subsections. It is started with extensions developed by the
Computational Engineering and Automation (CEA) research group at the Hochschule
Wismar, University of Applied Sciences, in the context of Schmidt’s [135] architecture.
Then, SES/MB-based operations are discussed in the context of the extensions under
consideration. The focus here is on an automated pruning operation, which was newly
developed by the author to remove limitations that exist in Schmidt [135]. Subsequently,
essential concepts of the extended SES/MB-based modeling are demonstrated by means
of examples. The first example refers to already known extensions, which are built upon
in this thesis. The second example deals with new concepts, which have been developed
by the author in cooperation with colleagues.

3.2.1 Selection Rules, Variables, Functions, and More

For automatic processing of an SES during pruning every decision for a selection at a
variation point must be taken based on pre-configured rules. Theses rules shall allow
decisions to be evaluated automatically during pruning. In the SES a selection rule can be
specified as node attribute by

• (i) a specialization node or

• (ii) siblings of aspect or multi-aspect nodes.

In case (i) the rule is called specrule. A specrule defines the conditions for selecting a
particular child node of the specialization when pruning the SES. In case (ii) the rule is
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called aspectrule. An aspectrule defines the conditions for selecting a sibling from aspect
or multi-aspect siblings when pruning the SES.

A rule can be based on variables called SES variables (SESvars), which have a global
scope for the SES. Thus, a rule can be defined conditionally based on the values of SESvars.
The value range of these SESvars can be limited as well as dependencies between SESvars
can be set by a semantic condition. Using semantic conditions the variant diversity coded
in the SES can be limited.

Another extension are SES functions (SESfcns), which are a global attribute of an SES
like the SESvars. SESfcns enable the specification of procedural knowledge in the SES.
Some kinds of variability can be described more easily with SESfcns as with SES nodes.
Typical examples include the definition of varying coupling relations or the definition of
variable parameter configurations, as shown by Pawletta et al. in [111].

During pruning, the SES tree is reduced. Usually the tree is traversed several times.
When resolving descriptive nodes, in some cases two or more aspect or multi-aspect nodes
on the same level (new siblings) are created in the meantime, for which no aspectrule is
defined. For automatic pruning it is necessary to sequence such nodes by giving a priority.
The priority is a global attribute of aspect and multi-aspect nodes.

In the classic SES/MB approach, the models in the MB are directly referenced by the
names of leaf nodes. This leads to a direct binding of node names of the SES and basic
models of the MB. To achieve a decoupling of node names of the SES and basic models of
the MB, a special attribute with the name mb was introduced. This attribute is defined for
leaf nodes and gets as value the name of the model to be referenced in an MB. This value
can also be assigned variably via an SESfcn depending on an SESvar. Further attributes
for configuring parameters of a basic model can be defined for leaf nodes. All node-specific
data – rules as well as attached variables – is referred to as attributes and attributes can
be defined conditionally using SESvars and SESfcns.

Couplings as introduced in the classic SES/MB framework are extended for usage in
combination with basic models of various type. Basic models can have different types of
ports depending on their dynamic behavior and their purpose. In a model, components
describing a signal flow-oriented system have a different type of coupling than components
describing a physical system or discrete event system. Therefore, the specification of
couplings is extended with fields for specifying the type of input and output port, such as
(source entity, source port, source port type, sink entity, sink port, sink port type). Usually
the types of the source port and the sink port are identical. An example for couplings
specified using an SESfcn are depicted in Figure 3.1. The port type is indicated by the
word type.

Finally, a special element of the classic SES/MB framework, the NONE node, should
be discussed at this point. This node can be used as an entity node under a specialization
and always forms a leaf node of the SES. If the node NONE is selected when pruning an
SES at a specialization, it means that no entity of this specialization will be integrated
into the candidate model. Optional SES tree sections as well as the logical OR selection
are expressed with the help of the NONE node. Thus, analogous to feature models, choices
can be described according to the logical AND, OR, and XOR. Deatcu et al. discuss in
[40] how to express the logical AND, OR, and XOR as well as options between nodes with
the elements of an SES.
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cplfcn(num)
    k=1
    for i in range(1,num)
        cplg(k)  =  (a, in(i), type, b_(i), in1, type)
        cplg(k+1)=(b_(i), out1, type, a, out(i), type)
        k=k+2
    end
    return (cplg)

Figure 3.1: Couplings specified using an SESfcn at a multi-aspect node.

For the interchangeability of SES models according to the Model-Driven Architecture
(MDA), an Extensible Markup Language (XML) notation has been defined by the author
taking into account all extensions discussed so far as shown in Appendix D on an example.

3.2.2 Methods of the Framework

The classic SES/MB framework defines the two methods pruning and build already
discussed. Furthermore, in the context of the classic framework, the operations merge
(Zeigler and Hammonds [164], Zeigler et al. [168]) and flattening (Zeigler and Hammonds
[164], Zeigler and Sarjoughian [165]) were introduced. All four operations were implemented
as methods for the architecture to be developed in this thesis. In the following, the four
methods are briefly discussed. The focus is put on the pruning operation, which has
been comprehensively developed methodologically. A new development, the pruning of
SES with hierarchical multi-aspects, is discussed separately in Section 3.2.4. The build
operation, which was also comprehensively redeveloped, is explained here only in principle.
A detailed description of the build operation is given in Chapter 4.

Merge On the SES, a merge operation is defined allowing two or more SES to be combined.
In merging, the root node of an SES is united with a leaf node of a target SES. This allows
the quick reuse of a once defined SES and supports a modular problem specification on
the SES level. After merging, the target SES must be checked for compliance with the
axioms in Section 3.1. The merge operation is performed in the SES modeling phase and
has no influence on the automated derivation of candidate models. For the objectives of
this thesis, no extended requirements for the merge operation follow.

Pruning The pruning operation is used to select one or more candidate models from a
FoM. As explained in Section 3.1, there are different approaches for the pruning operation.
The focus of this work is the automated pruning of an SES using the extensions discussed in
Section 3.2.1. A first algorithm of an automated pruning operation was already developed
by Schmidt in [135]. However, in Schmidt’s algorithm the hierarchy depth of multi-aspect
nodes is limited to one and the formation of sibling forms is limited to aspect siblings.
The pruning operation developed in this thesis fixes these limitations.

In Section 3.2.1, extensions of SES regarding siblings of aspect or multi-aspect nodes
have already been discussed. Zeigler and Hammonds [164] outline further sibling forms,
which can be used for modeling FoMs. However, in some cases no clear rules for pruning are
defined, as they are required for an automated pruning operation. With the collaboration
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of the author, several design patterns for variability modeling using the SES and unique
pruning rules for it have been defined by Deatcu et al. [40]. Appendix B briefly summarizes
the patterns and their basic pruning steps.

In the following, node-type related essential steps of the new pruning operation are
explained, which are summarized in the activity diagram in Figure 3.2. The diagram
contains the essential operations for pruning the different forms of sibling nodes, according
to the patterns shown in Appendix B, except for hierarchically arranged multi-aspect nodes.
The unsolved problem of automated pruning of hierarchical multi-aspects is discussed
separately in Section 3.2.4. The traversal algorithm for determining the next node is not
presented in detail. Essential for the automated pruning is the coding of the targets for
the selection of candidate models. The targets are coded by value assignments of the
SESvars. The SESvars form the input interface for pruning the SES.

Starting the pruning operation at first the allowance to prune is checked. Compliance
with the axioms of the SES according to Section 3.1 must be checked as well as further
constraints, such as that the root and all leaf nodes in the SES are entity nodes. All
SESvars are checked to fulfill their semantic conditions. Next, all SESfcn calls are evaluated
with the current value assignments of the SESvars and all variable value assignments of
node attributes are completed. After this step, all node attributes are set. Accordingly,
the individual nodes of the tree can now be traversed and evaluated. In the following, the
node type specific evaluations are briefly discussed.

Entity nodes
No special evaluation needs to be taken for entity nodes. They are transferred to the PES
according to their specification in the SES. But, in connection with specialization nodes
and multi-aspect nodes, renaming or attribute unification can be done.

Specialization nodes
Pruning a specialization node is linked to the axiom of inheritance. In a specialization
node, a child of the specialization node is selected by evaluating the specrule attribute
or a selection constraint relationship. After that, the selected child node and the parent
node, which are both of the type entity, are unified. That is, their names and attributes
are combined. In case of attributes with the same name, the attribute value of the
child node is set. Furthermore, the subtree of the selected child node is attached to the
newly created combined node. The original specialization node is deleted. Sibling nodes
of type specialization are evaluated one after the other without sequence relationship.
Specialization nodes in a sibling relationship with aspect or multi-aspect nodes are evaluated
before them.
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Figure 3.2: Essential node type related pruning steps without details of graph traversal.
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Aspect nodes
When pruning an aspect node, sibling relationships must first be checked. Brothers of
type specialization need to be pruned first as discussed before. If brother nodes of type
aspect or multi-aspect exist, a total of one aspect or multi-aspect node must be selected.
On the one hand, aspect or multi-aspect nodes can already be brothers in the SES, on the
other hand these nodes can have become brothers by resolving a specialization node. In
the first case, the node is selected by the aspectrules as given in the SES. In the second
case, the node is selected using the priority attribute. Unselected nodes of type aspect
or multi-aspect in a sibling relationship are deleted including their subtrees. A selected
aspect node is not modified. Its couplings attribute and parent-child node relationships
remain unchanged.

Multi-aspect nodes
Multi-aspect nodes are a special type of aspect nodes. The pruning of the SES is done
up to the reduction to exclusively one sibling node as with aspect nodes. Additionally,
a multi-aspect node is converted to an ordinary aspect node during pruning. For this
purpose the NumRep attribute of the multi-aspect node is evaluated. According to its
value, the child node including its attributes is duplicated. When duplicating, a unique
number is added to the names of all child nodes to comply with the axiom of valid brothers.
Finally, the name and the couplings attribute of the converted node is adjusted with
respect to the number and names of the generated children.

Flattening The result of the pruning operation is a decision-free tree, called PES, which
describes a unique system configuration of a selected candidate model. A PES can consist
of several hierarchy levels. In a PES as specification of a modular-hierarchical system
configuration in the sense of M&S, the root node describes the overall model, inner entity
nodes structures of coupled systems, and leaf nodes links to dynamic basic models in
an MB. For goal-oriented automated simulation experiments usually only the simulation
results are of interest and not the modular-hierarchical model structures of all investigated
variants of a FoM. Under this objective it makes sense to resolve the hierarchy levels of
the PES before generating a simulation model. The resolution of the hierarchy levels
is called flattening. Flattening simplifies the implementation of the build operation to
generate simulation models and reduces the execution time of simulation models, even
though simulation environments usually check models for structural simplifications before
simulation. The resulting tree structure after flattening is called Flattened Pruned Entity
Structure (FPES). A minimal FPES consists of three layers, beginning with the root
node, followed by an aspect node with a couplings attribute and all leaf nodes of the
former PES in one layer. In the context of the architecture to be realized, a flattening
operation was implemented. Applying the flattening method to a PES, all inner nodes are
removed. Resolving the inner nodes means that the coupling relationships, which are now
all specified in the couplings attribute of the one remaining aspect node, must be adjusted.

In addition to the transformation of the linkage relationships, the node names must be
checked in the FPES. In the PES, the same node names can occur in different paths of
the tree. During flattening, the paths are resolved and all leaf nodes of the PES become
brothers on one hierarchy level. Consequently, the axiom of valid brothers may be violated
in the FPES. Therefore, the flattening operation must check all leaf nodes for name equality
and rename them if necessary during the transformation. If nodes are renamed, the entries
in the coupling tuples must be updated.
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Build The build method creates a simulation model according to the structure and
parameter information in the PES or FPES. A simulation model is composed from
components of the MB, which are referenced via the mb-attribute in leaf entities. The
individual components are parameterized and connected according to the specified coupling
relationships. In particular, the types of ports are also defined in the extended SES
specification and thus the type of coupling is also specified. The MB organizes simulator-
specific components. The components are characterized by a simulator-specific interface,
which means that their parameterization and ports are suitable for a particular simulator.
This information must be stored in the attributes of the leaf nodes as well as in the couplings
attributes in the SES. This contradicts the statement that an SES is simulator-independent
(Zeigler et al. [167]). Thus, to achieve a fully simulator-independent representation of
system configurations in the SES, components in the MB must have identical interfaces
across simulators. Approaches for this are presented in Chapter 4.

Generalized the build method can be applied to component-based systems of any type.
Thus it is possible, for example, to describe variants of a software system and to create
executable code with the help of the build method. This form of software generation is
briefly discussed in Section 4.4.7.

3.2.3 Demonstration of SES/MB-based Modeling

To further explain the advanced concepts of SES/MB-based modeling, the modeling of the
feedback control system example introduced in Section 2.5.1 is considered. The concepts
shown here are based on Schmidt [135] and Pawletta et al. [114],[113]. They form the
foundation for further work by the author. Variant modeling with an SES, the construction
of a simulator-specific MB, the selection of a candidate model by automated pruning,
flattening, and the generation of executable simulation models are discussed. Figure 3.3
shows the modeling of the model variants of the feedback control system with an SES. The
SES models two structural variants of the feedback control system: (i) without feedforward
and (ii) with feedforward. By assigning values to the SESvar feedforward, which defines
the input interface of the SES, a variant can be selected automatically. The semantic
condition defines the allowed value assignment of the SESvar. In addition, the system
can be parameterized differently according to Section 2.5.1. The modeling of different
parameterization variants is trivial for the example and was therefore not specified in the
SES for reasons of overview.

The root node ctrlSys represents the overall system and the subsequent aspect node
ctrlSysDEC with its composition of subsystems. The overall system ctrlSys consists of
the process procUnitSys, a controller ctrlPIDSys, the setpoint system sourceSys, and the
disturbance system with sourceDist element and transfer function tfDist. For the correct
composition of the subsystems the components adder addDist and subtract feedbackSys are
also required. The coupling relations for the composition of ctrlSys from the subsystems
are specified in the attribute couplings of the aspect node ctrlSysDEC.

The variation point for mapping the two structure variants, ctrlSys without or with
feedforwardCtrl subsystem, is modeled by the specialization node feedforwardCtrlSPEC.
According to Deatcu et al. [40], options can be expressed by a specialization associated
with the NONE node. Therefore, the feedforwardCtrlSPEC node has children fc and
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Figure 3.3: SES of the feedback control system.

NONE. The structure of the feedforward controller is described by the subtree of the
entity node fc. An fc consists of a transfer function tfFeedforward and an adder system
addFeedforward. The coupling relations are defined in the attribute cplg2 of the aspect
node fcDEC. The couplings are presented in Table 3.1.

Table 3.1: Couplings in cplg2 in the SES of the feedback control system.

Source Sink
EntityName Port Type EntityName Port Type
fc u1 SPR tfFeedforward u SPR
tfFeedforward y SPR addFeedforward u1 SPR
fc u2 SPR addFeedforward u2 SPR
addFeedforward y SPR fc y SPR

The conditions for selecting a structure variant during pruning are defined in the
attribute specrule of node feedforwardCtrlSPEC. The specrule is based on the SESvar
feedforward and controls whether a candidate model with or without feedforward system
is selected. Due to the different model structures of ctrlSys – with or without subsystem
feedforwardCtrl – the coupling relations in node ctrlSysDEC are structure dependent.
Therefore, the couplings in the attribute cplg1 of ctrlSysDEC are defined using an SESfcn
that describes variable couplings depending on the SESvar feedforward in addition to fixed
couplings. This SESfcn cplfcn is shown in Listing 3.1 in pseudocode. Next to the SESvar
feedforward the special variable children is specified, which refers to the names of the child
nodes of ctrlSysDEC. Using the variable children in an SESfcn decouples node names in
the SES from the representation of node names in the SESfcn. In contrast to the cplg1
defined with an SESfcn, the couplings in cplg2 are defined as fixed as presented in Table
3.1.
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1 cplfcn ( feedforward , children ):
2 # children (0) is feedforwardCtrl
3 # children (1) is sourceSys
4 # children (2) is feedbackSys
5 # children (3) is ctrlPIDSys
6 # children (4) is procUnitSys
7 # children (5) is sourceDist
8 # children (6) is tfDist
9 # children (7) is addDist

10
11 # fixed couplings
12 cplg (1) =( children (1) , y / SPR , children (2) , u1 / SPR)
13 cplg (2) =( children (2) , y / SPR , children (3) , u / SPR)
14 cplg (3) =( children (4) , y / SPR , children (7) , u2 / SPR)
15 cplg (4) =( children (7) , y / SPR , children (2) , u2 / SPR)
16 cplg (5) =( children (5) , y / SPR , children (6) , u / SPR)
17 cplg (6) =( children (6) , y / SPR , children (7) , u1 / SPR)
18
19 # variable couplings
20 if feedforward ==0:
21 cplg (7) =( children (3) , y / SPR , children (4) , u / SPR)
22 else if feedforward ==1:
23 cplg (7) =( children (5) , y / SPR , children (0) , u1 / SPR)
24 cplg (8) =( children (3) , y / SPR , children (0) , u2 / SPR)
25 cplg (9) =( children (0) , y / SPR , children (4) , u / SPR)
26 end
27
28 # return
29 return (cplg)

Listing 3.1: Couplings in cplg1 in the SES of the feedback control system.

All leaf nodes have an mb-attribute that refers to a basic model in an MB. For example,
the ctrlPIDSys node refers to the basic model PID and defines the configuration parameters
k = 1 , Ti = 1 and Td = 0 for it. Alternative parameterizations can be specified in the
attributes of the leaf entities. The selection of a parameterization variant during automated
pruning can be described analogously to variable coupling relationships with an SESfcn or
using multisets (Pawletta et al. [111]).

The selection of a system variant is done with the help of pruning. Pruning evaluates
the value of the SESvar feedforward. The only decision node in this example is the
feedforwardCtrlSPEC node. According to the pruning algorithm in Section 3.2.2, the
specialization is resolved and the selected child node is unified with the parent node
of the specialization. Both structure variants are shown in Figure 3.4. The SESfcn
cplfcn in Listing 3.1 for calculating the couplings for the ctrlSysDEC node is evaluated
so that all variable coupling relationships of the SES are defined fixed. For the variant
with feedforward control, it is necessary to adjust the couplings in the PES according to
changed node names during pruning. Some couplings of PES number 2 in Figure 3.4 are
presented in Table 3.2. A complete list of the couplings is presented in Appendix C.

As explained in Section 3.2.2, converting the PES to an FPES facilitates model generation.
Figure 3.5 shows the FPES for PES number 2 in Figure 3.4.

Flattening requires the adaptation of the couplings, because inner nodes are removed.
This is shown by an example. In Table 3.2 two couplings of PES number 2 refer to the
inner node fc_feedforwardCtrl in the PES. The combination of entity name, port, and type
fc_feedforwardCtrl / y / SPR is found in two couplings as source and as sink. These two
couplings can be united by replacing fc_feedforwardCtrl. The resulting coupling refers to
leaf nodes. In addition to the first two couplings taken from the PES the resulting coupling
is shown as third coupling in Table 3.3. A complete list of the couplings is presented in
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Figure 3.4: Possible PES pruned from the SES.

Table 3.2: Some couplings of the PES number 2 in Figure 3.4.

Source Sink
EntityName Port Type EntityName Port Type

cplg1
sourceSys y SPR feedbackSys u1 SPR
feedbackSys y SPR ctrlPIDSys u SPR
fc_feedforwardCtrl y SPR procUnitSys u SPR
... ... ... ... ... ...

cplg2
addFeedforward y SPR fc_feedforwardCtrl y SPR
... ... ... ... ... ...

sourceSys
{mb='MB/Constant'

  k=0}

Figure 3.5: FPES for PES number 2 in Figure 3.4.

40



3 Extensions to SES/MB-based Modeling and Linking With Simulation Experiments

Appendix C.

Table 3.3: Some adapted couplings in the FPES of the feedback control system.

Source node Sink node
EntityName Port Type EntityName Port Type
sourceSys y SPR feedbackSys u1 SPR
feedbackSys y SPR ctrlPIDSys u SPR
addFeedforward y SPR procUnitSys u SPR
... ... ... ... ... ...

The MB with basic models is created directly from basic components of the general
Modelica library [91]. Figure 3.6 shows the basic models of the MB of the feedback control
system.

Figure 3.6: MB with Modelica basic models.

The build operation is implemented simulator-dependent for generating Modelica models.
The generated models can be executed with Modelica simulators such as OpenModelica
or Dymola. Figure 3.7 shows the two possible model structures, each of which can be
generated based on an FPES.

3.2.4 Automated Pruning of Hierarchical Multi-Aspects

So far, the descriptive node types aspect and specialization have been considered primarily.
Compositions were specified by aspect nodes and decision points with specialization nodes.
The multi-aspect node was introduced only in principle. Now the multi-aspect node will
be considered in detail under the requirements of the automated pruning of an SES. For
explanation, an example is developed step by step.

Figure 3.8 shows a minimal SES consisting of two entity nodes and one multi-aspect. The
root node lab specifies a computer lab consisting of a set of similar networked computers
(c_1, c_2, ...). The multi-aspect node csMASP specifies the composition of the entity lab
from similar entities of type c. A multi-aspect node defines two attributes: (i) NumRep and
(ii) couplings. The NumRep attribute defines how many entities of the type of the following
entity, in this case how many computers of type c, are to be generated when pruning
the SES. Due to the generation property, the subsequent entity node is called generating
entity. In the shown SES the NumRep attribute is defined with the SESvar NumC. The
couplings attribute specifies the coupling relations of the entities to be generated with
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Figure 3.7: Modelica-based model structures generated with the build operation and using
an FPES: (i) case feedforward = 0 → without feedforward control and (ii) case
feedforward = 1 → with feedforward control.

each other and with the parent entity. The couplings attribute for the specification of
the networking of the computers is not specified here. Since the same laws apply to the
couplings attribute as discussed for the aspect node, they are not explicitly considered
below. The coupling relationships, which are often variable depending on the NumRep
attribute, can be described compactly with SESfcns.

The right part Figure 3.8 shows a PES derived by pruning, assuming a value assignment
NumC = 3 . When pruning a multi-aspect node, it is transformed into an aspect node.
The generated entities receive an index, so that the axiom valid brothers is obeyed.

Figure 3.9 shows an extension of the SES with an entity node campus and a multi-aspect
named labsMASP. This SES describes a campus that hosts multiple computer labs, each
with multiple computers. The occurrence of multiple multi-aspects in a path is called
hierarchical multi-aspects. The derivation of a PES shown in two steps shows that this
SES only allows the derivation of labs with the same number of computers.

The approaches to automated pruning of SES known so far all introduce restrictions
on the use of multi-aspects. Schmidt [135] limits the use in that the child node of a
multi-aspect must be a leaf node. Accordingly, he prohibits hierarchical multi-aspects
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Figure 3.9: SES with two multi-aspects in one path and derivation of a possible PES by pruning.

completely. Zeigler and Sarjoughian [165] support hierarchical multi-aspects in the MS4Me
software system analogous to the example in Figure 3.9. It shall be criticized that there is
no support for specifying multiplicity in the NumRep attribute.

Figure 3.10 shows a new approach for specifying multiplicity in the NumRep attribute,
which was first published by Folkerts et al. [53]. The entity node following a multi-aspect is
called generating entity. In the new approach, the generating entity defines a variable of the
same name with underscore prefix, in this case named _lab. This variable is automatically
assigned the suffix index of the generated entity as a value during pruning. Subsequent
nodes in the same path can evaluate this special attribute. In the example in Figure
3.10, the _lab attribute is used by the multi-aspect csMASP. When pruning csMASP,
_lab is passed as input argument to the SESfcn fun, which returns the current value of
the NumRep attribute of csMASP depending on _lab. The example shows that for the
specification of multiplicity only the SESfcn fun and the vectorial SESvar Computers must
be defined.

The introduced extension for the specification of multiplicity can be used in combination
with specializations. Figure 3.11 shows an example. As before, the SES describes a
campus with computer labs whose number is defined by the SESvar NumLabs in the
NumRep attribute of the multi-aspect labsMASP. The generating entity lab is followed by
a specialization labSpec. This specialization decides in the selection rule attribute whether
a lab with desktop computers ds (left path) or a lab with notebooks ns (right path) is
to be generated. In addition to the specialization, an SESvar Types and an SESfcn fun1
are introduced. The SESfcn fun1 works analogous to the SESfcn fun. During pruning,
the computer type to be generated is determined by calling fun1(_lab) in the selection
rule of labSpec on the basis of the index of a generated lab entity. Figure 3.11 shows the
derivation of a PES for the following SESvar assignment:
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Figure 3.10: SES with two multi-aspects in one path and specification of multiplicity as well as
derivation of a possible PES by pruning.

NumLabs = 2 , Types = [′d ′,′ n′], and Computers = [3 ,4 ].

The variables encode the generation of two labs, one with three desktop computers and
one with four notebooks.

More details about the developed extension and its usage to specify a family of systems
in the context of an engineering application are published by Folkerts et al. in [53].

3.2.5 Summary of New Extensions

The extensions of the SES developed in the course of this work are briefly summarized here.
These are the extension of couplings with port types, the extended pruning operation, and
the extension regarding hierarchical multi-aspect nodes.

Basic models of different type differ in their interface depending on their dynamic
behavior and their purpose. While in the MB basic models of different types can be
organized, in the SES the type of a basic model must be taken into account. Different
types of basic models can be referenced with the mb-attribute. However, with the aim
to support several simulation tools in the SES the interface of basic models needs to be
specified in couplings in the SES. This allows the description and generation of models of
different type or even hybrid models, which are composed using basic models of different
system classes, with the SES/MB approach.

A central aspect is the selection of one model variant with the pruning method. De-
scribing complex systems often requires greater hierarchy depths according to multi-aspect
nodes and the combination of different descriptive nodes on one level. The Cyber-Physical
Systems (CPS) motivated in the introduction often represent complex systems. The
extension of the pruning algorithm is thus an essential development.

Another extension was discussed in Section 3.2.4. Multi-aspect nodes are a powerful
modeling element. Using multi-aspect nodes the description of complex systems is simplified.
However, pruning SES with multi-aspect nodes without user interaction is challenging
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Figure 3.11: SES with hierarchical multi-aspects in combination with a specialization and deriva-
tion of a possible PES by pruning.

(Zeigler and Hammonds [164] and Zeigler and Sarjoughian [165]). This is even more true
if the multi-aspect nodes are combined with specialization nodes or if there are multiple
multi-aspect nodes in one path. Unlike the other descriptive nodes, multi-aspect nodes
generate new nodes during pruning. With the introduction of a new attribute at generating
nodes, the pruning can be automized for complex SES.

3.3 Linking With Simulation Experiments

In this subsection, concepts for linking the SES/MB-based modeling approach with
simulation experiments are discussed. In the introduction to Chapter 2, it is noted that
each simulation experiment consists of a model and a simulator to calculate the dynamic
behavior over time. The one-time calculation of the dynamic behavior is generally referred
to as a simulation run or simply simulation. In the early years of M&S, simulation models
and experiments were coded by hand in assembler or FORTRAN and no explicit distinction
was made between model, simulator, and experiment. With the advent of specialized
program systems in the 1960s (Gordon [60]) the separation into model and simulator
became established. With the concept of the Experimental Frame (EF) Zeigler introduced
in [162] an interface to separate the dynamic model from the application context. The
EF specifies in this sense an interface for a model to perform experiments with it. The
concept of the EF and its connection with the SES/MB approach are considered in the
first two subsections.
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The life cycle model of a FoM for simulation in Figure 2.1 in Section 2.1 states, that a
simulation experiment usually does not consist of a single simulation run. M&S is often
used in combination with other numerical methods (Barton [7], Kleijnen [76], Kleijnen
[75], Leye [83]), such as numerical optimization methods (Carson and Maria [25]). As
an umbrella term for numerical experiments with integrated simulation runs, the term
simulation-based experiments is often used in the M&S community. Based on a broad
literature review, Schmidt [135] classifies simulation-based experiments with respect to the
experiment objectives, the experiment phases, and the experiment setup. For the experiment
objectives he distinguishes five categories, such as parameter screening, sensitivity analysis,
or optimization. By experiment phases he understands a sequence of experiment objectives
in a simulation study. He examines the experimental setup in analogy to model structures
and establishes a connection with the SES/MB approach. In the context of this work the
investigations to the experiment structure and the connection with the SES/MB approach
are of interest, which is dealt with in the third subsection. A classification of the focus of
this work, the experimentation with different simulators, is given before specific challenges
in this regard are discussed.

3.3.1 Experimental Frame as Interface to Simulation
Experiments

A simulation experiment uses a simulation model in a specific context. It defines certain ex-
perimental conditions and experimental objectives. Zeigler introduced in [162] the concept
of the EF to represent the context of a model. In general, an EF is a layer surrounding the
source system, which is in our domain the model. The concept of EF is continuously further
developed, researched, and adapted by several authors. Zeigler [163] and Rozenblit [127]
adapted the EF for hierarchical Discrete Event System Specification (DEVS) modeling and
used it in combination with the SES methodology. Further refinements and applications
of the concept of EF are published by Zeigler et al. [167], Daum and Sargent [39], Traoré
and Muzy [146], Denil et al. [41], and Schmidt [135].

In summary, it can be stated that an EF can be implemented using the three components:
generator, transducer, and acceptor. However, all three components do not always have to
be present. An EF is a coupled system, whose components can be structured hierarchically.
Since the EF is part of the Simulation Model (SM), the model for which the EF defines the
context is often referred to as Model Under Study (MUS) (Schmidt [135]). The coupling
relations of the components of the EF and the EF with the MUS are not defined. An SM
is a coupled system on the highest hierarchical level, consisting of an EF and a MUS. The
EF generates inputs to a MUS and processes outputs of a MUS. Since the EF interfaces to
the simulation-based experiment, it defines the input/output interface of an SM according
to Traoré and Muzy in [146]. An EF can be valid for different MUS. On the other hand,
different EFs can be specified for one MUS. Figure 3.12 shows the block diagram of an
SM with EF and MUS. Since a simulator is necessary as an execution component for each
simulation-based experiment, it is shown in the background.

Figure 3.12 shows exemplary coupling relations of the EF. The input quantities I and
output quantities O, which refer to the EF are marked by the index E, those which refer
to the MUS with the index M. The quantities IE and OE are not time dependent. At the
start of the simulation the EF receives input quantities of the experiment to be executed
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Figure 3.12: Block diagram of a simulation model with EF and MUS as well as executing simulator
according to Schmidt [135].

and after completion of the simulation results are returned to the experiment in the form of
output quantities by the EF. In contrast, the input quantities IM (t) and output quantities
OM (t) of the MUS are time-dependent.

The generator of the EF configures the MUS. The configuration may involve setting
initial values at the start of the simulation or computing time-dependent input quantities
of the MUS during the simulation. The time-dependent output quantities of the MUS
are processed by the transducer. The latter computes the experiment-dependent values
of interest from the OM (t). The acceptor receives the outputs from the transducer and
checks for compliance with experiment conditions. Of course, the acceptor could directly
evaluate output quantities of the MUS via an appropriate coupling relation. In case of
non-compliance with given experiment conditions or if the study goal is reached, the
acceptor aborts the simulation.

Analogous to the specification of system variants of a MUS, variants and compositions
of EFs, and compositions of SMs from MUS and EFs can be described with an SES. Basic
models for the composition of an EF can be organized in an MB. This will be demonstrated
by an example in the next subsection.

3.3.2 Linking SES/MB-based Modeling and the Concept of
the Experimental Frame by Means of an Example

To demonstrate SES/MB-based modeling including the use of discussed extensions, a
feedback control system was modeled with two different model structures in Section 3.2.3.
Based on the SES and MB specified there, the example is extended here to include an EF.
For this purpose, the context of the model is defined first.
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Figure 3.7 shows the two model structures specified in the SES in Figure 3.3. The EF is
intended to support the investigation of both model structures. The parameters k and
T of the PID controller, i.e. the basic system ctrlPIDSys, shall be variably configurable.
Furthermore, different disturbance signal sources, named sourceDist in Figure 3.7, shall be
investigable. The values of interest are the maximum overshoot of the controlled variable,
the settling time as well as the course of the controlled variable over time. The EF shall
define boundary conditions on the basis of maximum permissible values for overshoot and
settling time. If a boundary condition is violated, the simulation run shall be aborted and
judged as invalid. If there is no violation of the boundary conditions, the simulation run
shall be terminated by the simulator in a regular way.

Figure 3.13 shows the structure of an SM consisting of an EF and the model structure
of the feedback control system without feedforward control, named ctrlSys, as MUS. In
contrast to the model structure in Figure 3.7, the disturbance source sourceDist is no
longer part of the MUS, but part of the EF. Moreover, the parameters k and T of the
PID controller ctrlPIDSys are set via external input couplings. The EF is composed by a
generator, acceptor, transducer, and a mux component. The generator is a coupled model
and the other ones are basic models. The generator gets the current input variables IE(t0 ):

• k, T the PID controller parameters,
• dist the parameters for the disturbing source,
• ymax

acc the maximal acceptable control deviation, and
• tmax

cs the maximal acceptable settling time after a disturbance
for a simulation run at simulation start time. At time t0 the generator initializes

components of the EF and the MUS via coupling relations. During a simulation run, the
generator’s disturbance source subsystem generates inputs for the MUS ctrlSys. Of course,
it is possible to perform more complex operations in a generator as demonstrated by this
example. The time dependent values of the control variable y(t) and the reference value
from the sourceSys are sent from the MUS to the transducer. The transducer stores the
temporal course of the controlled variable and calculates the maximum overshoot and the
settling time. The acceptor checks the two boundary conditions to be met on the basis of
the values received from the transducer and terminates the simulation run if a boundary
condition is violated and judges it with the verdict V=’false’. If the boundary conditions
are met, the verdict V=’true’ is set at the end of the simulation. At the termination or
end time of the simulation, both are named with tfinal , the acceptor sends the verdict V
to the transducer, whereupon the transducer outputs the stored course of the controlled
variable y(t) as vectorial quantities (tout , Yout). The basic system mux generates the total
output OE(tfinal) of the EF.

Figure 3.14 shows a basic SES that specifies the extension of the two model structures
of the feedback control system ctrlSys by an EF, named ef. The EF specifies two structure
variants with the specialization node sourceDistSPEC. Depending on the value assignment
of the SESvar dist, either a step function step or a pseudo random binary sequence prbs is
selected as disturbance source during pruning by the specrule. The model structure shown
in Figure 3.13 corresponds to the result of a pruning with the SESvar assignment:

feedforward = 0 , dist =′ step′.

For the generation of an executable SM according to Figure 3.13, the MB must be
extended by the basic models for the EF referenced at the leaf nodes of the SES. Schmidt
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Figure 3.13: Structure of an SM consisting of an EF and the model structure of the feedback
control system without feedforward control as MUS.

et al. show in [137] an application in the field of model-based testing.

An EF specifies only the interface for simulation-based experiments with a MUS. The
execution of an experiment requires a specification of the experiment procedure and a link
to execution methods. This will be discussed in the next subsection.

3.3.3 Structure of Simulation-based Experiments

The minimum simulation-based experiment is a single simulation run. To execute a
single simulation run, simulation parameters such as start time, final time or, in the
case of a continuous simulation, a step size or methods such as a step size method
and an Ordinary Differential Equation (ODE) solver method must be defined, and a
connection with a simulator must be established. A first approach to the systematic
structuring and execution of simulation experiments was proposed by Breitenecker [20] for
continuous system simulation with the Continuous System Simulation Language (CSSL)
standard (Strauss et al. [140]). According to Breitenecker [20], a decisive next step was
the structuring of simulation-based experiments by Zeigler [162] and Zeigler [163] in:
model frame, experimental frame, and experiment control as well as the connection of the
M&S with an MB (Zeigler [163]), whereby Breitenecker [20] does not deal with the SES.
Breitenecker [20] criticises the babylonian confusion of language in M&S due to not clearly
defined terms and defines the broadly used terms: model, method, experiment as follows:

• A model is the description of a process using a mathematical formulation and a
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certain language.

• A method is a procedure, an algorithm, which does anything with the model.

• An experiment is the performance of a certain method with a certain model where
all aspects of execution control are included.

Without explicit reference to Breitenecker, Schmidt [135] also bases his classification of
the structure of simulation-based experiments on the triple (model, method, experiment)
and defines the three terms analogously to Breitenecker [20]. Starting point for Schmidt
are the works of Zeigler and colleagues in [163] and [167] as well as an analysis of a large
number of later works on simulation-based experiments, such as Han et al. [67], Law
and Kelton [81], Leye [83], Mittal and Risco-Martín [90], Uhrmacher and Weyns [149], or
Uhrmacher [148].

Schmidt [135] defines three types of simulation-based experiments according to their
complexity. He distinguishes between simple experiments, complex experiments, and highly
complex experiments. Simple simulation-based experiments include the SM with an EF
and a MUS, a simulator and an Experiment Control (EC). The basic steps of the EC are:

• configuration of a simulation run,

• execution of a simulation run,

• data collection, analysis, and evaluation of results, and

• a decision whether to configure, execute, and analyze another simulation run or to
terminate the experiment.

Complex simulation-based experiments have additionally an Experiment Method (ExM)
and a Simulation Method (SnM), as shown in Figure 3.15. The input interface IExM and
the EC were added by the author. The ExM is started by the EC and returns results to
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the EC. The ExM can execute simulation runs via the SnM, analyze and save simulation
results, and reactively configure and initiate new simulation runs. The ExM is defined by
Schmidt [135] as a software-implemented numerical method without direct reference to
an SM or simulator. ExM have method-specific parameters PExM . These are initiated by
the EC via the interface IExM . According to Schmidt [135], typical examples of ExM are
numerical optimization methods or methods for sensitivity analysis. The SnM handles
the connection of the ExM to the SM and the executing simulator. The configuration of
a simulator is usually stored in the SnM as a parameterizable method. Additionally, it
defines simulation specific parameters PSnM . The PSnM are set via the input interface
ISnM or directly from the EC. For a continuous-time simulation, the SnM typically sets
simulator-specific data and methods, such as an ODE solver method, a numerical step
size, and a start and end time. The SnM is a kind of wrapper for a specific simulator and
a communication layer between simulator as well as SM and ExM. The EC serves on the
one hand to initialize an ExM as well as the SnM, on the other hand it can link different
ExM according to the different experiment phases and goals in Schmidt [135].

EC

results

IExM ISnM

OSnM

Experiment

Method

{PExM}

Simulation

Method

{PSnM}

IE

OE

Simulator

EF

IExM...input ExM; PExM...parameters of experiment method;

ISnM...input variables of simulation method; PSnM...parameters of simulation method;

IE...input variables of EF; OE...output variables of EF;

OSnM...output variables of simulation method

Figure 3.15: Block diagram for structuring complex simulation-based experiments according to
Schmidt [135] with supplemented interface to an EC.

In complex simulation-based experiments only parameters of a MUS are varied, while
in highly complex experiments different model structures and parameter variations of
a MUS are studied. Schmidt [135] follows up on preliminary work by Hagendorf and
colleagues (Hagendorf and Pawletta [65], Hagendorf et al. [66], Hagendorf [64]). Based on
the classical SES/MB framework, Hagendorf [64] develops an approach for the combined
simulation-based optimization of model parameters and model structures. Based on this,
Schmidt [135] derives the class of highly complex experiments and develops his approach
of highly complex experiments based on the SES/MB approach. Schmidt’s [135] principal
software architecture is discussed in detail in Section 4.2.

According to Schmidt’s [135] approach, simulation-based experiments can be considered
analogously to modular-hierarchical structured FoMs. The modularized structuring of
experiments supports the implementation of basic experiment methods, which can be
organized analogously to basic models in an MB. In an SES, both the structural design
of a simulation-based experiment and variants of simulation-based experiments can be
specified for a FoM. The formal connection with the basic experiment methods is done via
the mb-attribute of experiment-related leaf nodes. By pruning the SES, a simulation-based
experiment can be derived according to the structure in Figure 3.15 with the components
ExM, SnM, and SM in the form of a PES or an FPES. In conjunction with an MB, a
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simulator-specific experiment can then be generated using the build method.

Figure 3.16 shows a principal SES including an experiment specification for the intro-
duced feedback control system. The root node exp is characterized by the aspect node
expDEC with its attribute cplg_exp as a structure of SM (node sm), SnM (node snm),
and ExM (node exm). The subtree of sm corresponds to the SES in Figure 3.14 and
can be generated by a merge operation. The leaf entity node snm defines a link to a
simulator-specific SnM in the MB, in this case for the simulator Simulink. Furthermore the
necessary configuration parameters PSnM are defined in the node attribute. The exm node
with the following specialization node exmSPEC describes different experiment variants.
The selection of a variant is done during pruning by evaluating the specrule. Depending
on the selection, the following types of experiments are derived:

• selection of node NONE → pruning result is a NONE node for the ExM, which
describes a simple experiment structure without an ExM. That means, all experiment
steps and the inputs ISnM for the SnM component are given by the EC.

• selection of node paraStudy → pruning result is a node paraStudy_exm, which
describes a complex experiment structure with a basic experiment method named
paraS as ExM. The node paraStudy specifies a parameter study for the MUS. The
attributes could describe parameter variations for k, T, or dist and allow maximum
values according to Section 3.3.2. The algorithm of the parameter study is coded in
the experiment method paraS, which is stored in the MB. That means, the experiment
is started by the EC, but the individual steps of the parameter study are coded in
ExM paraS. The inputs ISnM for the SnM are given by the ExM.

• selection of node optimization → pruning result is a node optimization_exm, which
describes a complex experiment structure with a numerical optimization method as
ExM. The SES is not further detailed here. The double edge of the node optimization
is meant to indicate the further differentiation into different numerical optimization
methods by specializations.

In the analysis of the SES in Figure 3.16, only the experiment-specific nodes snm and exm
with subtree have been considered so far. According to Figure 3.3, the entity node ctrlSys
describes two different model structures of the MUS. If the different model structures are
also part of the simulation-based experiment, it is a highly complex experiment according
to Schmidt’s [135] classification. In the EC, the following experiment steps could be
defined, with the goal of finding a controller structure that is as minimal as possible, taking
into account the boundary conditions:

• define a source disturbance sourceDist and experiment goals in the form of limits to
meet boundary conditions such as maximum overshoot etc.,

• try model structure ctrlSys without feedforward control (SESvar feedforward = 0 )
using different parameter variations (SESvar Exppara =′ paraStudy′),

• if the goals are reached with one of the studied configurations, then return the best
configuration as overall result,

• else try model structure ctrlSys with feedforward control (SESvar feedforward = 1 )
using different parameter variations (SESvar Exppara =′ paraStudy′),

• if the goals are reached with one of the studied configurations, then return the best
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Figure 3.16: Principle SES with an experiment specification and the feedback control system
with EF as SM (see Figure 3.14).

configuration as overall result,

• else return that the goals cannot not be reached with these model structures and
parameter variations.

Figure 3.17 shows result plots of the described experiment using a step disturbance and
two parameter variations for the PID controller.

A detailed software architecture for the description and execution of highly complex
experiments based on the SES/MB framework is presented in Chapter 4. In extension
to the work of Schmidt [135], it is investigated how a simulator-independent architecture
based on Functional Mock-up Interface (FMI) can be realized.

3.3.4 Challenge for Experiments with the SES/MB Framework
with Multiple Simulators

The modular-hierarchical design of the EF and the SnM as well as the ExM allows the
integration of all components into the SES/MB framework. Schmidt [135] describes the
EF, the SnM, and the ExM as components that can be organized in an MB. Thus, all
parts of a simulation experiment can be described in an MB. The MB usually organizes
simulator-specific components. The goal in this work is to show the experimentation on
multiple simulation tools.

The components of the EF are part of the SM and thus these are executed during a
simulation run. The EF configures the MUS and controls a simulation run. In doing so,
a simulation run can be aborted immediately if limit values given for the simulation are
violated. For this purpose, the live simulation data of the MUS must be accessed. This
means that the components of the EF are simulator-specific, just like the MUS.

Different simulation tools also have different interfaces for simulator configuration. Thus
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Figure 3.17: Result plots of the experiment with two parameter variations and two model
structures.

the specification of the component SnM is identified as the main challenge in the experiment
structure. One part of the SnM describes the configuration of the simulator. Therefore
an interface to the simulation tool is needed. This part of the SnM specifies simulator-
independent properties such as tstart or tfinal as well as simulator-specific properties such
as the simulation method of the simulator, i.e. the ODE solver. A simulation tool often
provides multiple solvers. Each solver differs in the name and the parameterization.
According to Schmidt [135] the SnM can be adapted by setting its method specific
parameters, called PSnM . This allows the setting of different configurations for one
simulation tool. Apart from different solvers in one simulation tool, in multiple simulation
tools solvers with the same algorithm usually have different names and parameters.
Different solvers in one simulation tool have the same configuration interface, the interface
in other tools may differ. For different simulation tools the interface of the SnM needs to
be specific. Furthermore the SnM controls the model execution, e.g. several simulation
runs, as well as data acquisition. These tasks require an interface to the simulator as well.
In different simulation tools this interface differs. The SnM therefore can not be organized
as a simulator-specific or general simulator-independent component in the MB. Other
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tasks of the SnM like the analysis of collected data or the data evaluation can be specified
simulator-independently.

3.4 Summary

The discussed extensions of the SES/MB framework offer new modeling approaches, remove
limitations, and support the integration with simulation-based experiments as well as the
integration into software architectures. In particular, the introduction of SESvars and
SESfcns makes modeling with SES more flexible. Variable coupling relations and selection
rules can be specified much more easily and clearly. A further flexibilization follows from
the mb-attribute for the definition of links to basic models in the MB. The node names
and names of the basic models are completely decoupled and links to different MBs can
be defined. Furthermore, the SESvars and semantic conditions can be used to define an
interface of the SES for integration into software architectures. In this connection stands
also the again revised pruning operation. With the introduced extensions for the pruning
of hierarchical multi-aspects as well as the extensions for the pruning of combinations of
descriptive nodes on a hierarchy level, so far existing restrictions of the automated pruning
of an SES were removed.

The picked up concept of the EF for the separation of MUS from the context of the
model application shows advantages and disadvantages in the opinion of the author. The
EF allows a clear decoupling of MUS and application context. Thus, the EF clearly
increases the clarity of modeling and the reusability of the MUS for complex models. On
the other hand, an increased modeling effort is associated with the EF. For relatively
simple models, such as the example model considered, the advantages and disadvantages
should always be weighed.

The modular structure of simulation-based experiments and the clear separation between
experiment methods and experiment control support a specification of experiments in
analogy to FoMs. Basic experiment methods can be organized like basic models in an MB.
The structure of experiments and variations of experiment parameters can be specified in
the SES. By means of the pruning operation, not only an SM consisting of MUS and EF can
be derived as a candidate, but also a simulation-based experiment. In the minimum case
a simulation-based experiment consists only of an SM and an SnM, which interfaces the
executing simulator with the SM and the EC. The SnM is needed in every simulation-based
experiment for the execution of simulation runs. It is simulator-specific and implements a
kind of wrapper for a concrete simulator. Complex experiments additionally include an
ExM. The ExM is a numerical procedure without direct reference to an SM or simulator
and can itself be composed in a modular-hierarchical way. The ExM communicates with
the EC, initiates simulation runs via the SnM, and evaluates simulation results.

In summary, basic models, EF components, simulator-specific SnMs, and basic experi-
ment methods for building ExMs can be organized in an MB. Structures and configurations
of simulation-based experiments can be specified in an SES. By means of pruning, the
structure and configuration of a candidate simulation-based experiment can be derived in
the form of a PES or an FPES. If an appropriate build method is available, an executable
simulation-based experiment can be generated from the PES or FPES using the MB.
The execution of the experiment or the linking of simulation-based experiments is the
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responsibility of the EC.

Critically it should be noted, that the basic models, the EF components, and the SnM
are simulator-specific. Accordingly, the build operation is also simulator-specific. In
Chapter 2 the generation of models or simulation-based experiments for investigations with
different simulators was demanded. In order to support the build operation with different
simulators, the basic models, the EF components, and the SnM need to be adapted during
model or experiment generation. Consequently, a software component implementing the
build method must contain simulator-specific code to a high degree.

The objective of the next chapter is to develop an SES/MB-based software architecture
that supports both simulator-specific MBs and simulator-independent MBs and associated
model generation methods.
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Simulation Experiments with Different
Simulators Based on the SES/MB
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In the previous chapter, extensions of the System Entity Structure (SES)/Model Base (MB)
approach were described. On the one hand, limitations in the modeling of Families of
Models (FoMs) are removed and on the other hand, the integration of the SES/MB approach
into software architectures is supported. Furthermore, concepts for the specification and
generation of simulation-based experiments for FoMs were discussed.

In this chapter, a software architecture and procedures for the automation of simulation-
based experiments based on the SES/MB framework are presented. A major focus is the
specification and generation of simulation experiments using different target simulators.
First, the motivation for the automation of simulation experiments and the support of
different target simulators is clarified. Then, an existing architecture for performing
automated SES/MB-based simulation experiments is analyzed and ideas for supporting
multiple target simulators are discussed. Based on the previous analysis and discussion, a
Python-based architecture that supports different target simulators is then presented. The
individual components of the architecture and the challenges to be overcome are presented
in detail. Finally, a short excursus on the specification and generation of non-simulation
specific applications with the software architecture is given and essential aspects of the
chapter are summarized.

4.1 Objectives and Demarcation

In engineering, a large number of different system configurations often has to be investigated
by simulation, for example to determine the best possible design or to realize individually
adapted system designs. In this thesis, a minimal case study of a control system is
considered as an example. The aim is to find a minimal structure with the corresponding
control parameters for defined targets. As a procedure model for simulation studies, the life
cycle of a FoM for simulation was already considered in Section 2.1. The classic SES/MB
framework offers a formalized approach to specify different system configurations and to
generate an executable simulation model by means of the operations pruning and build.
This covers steps 3 to 6 of the life cycle model according to Figure 2.1. However, the
classic SES/MB framework does not support automation of simulation experiments and
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simulation studies based on defined targets.

In real world applications, the execution of the necessary simulation experiments is often
time-consuming and manual handling of steps 6 to 8 of the life cycle model is error-prone.
Even a single simulation run often has a long runtime. Therefore, as few simulation runs
as possible should have to be performed in order to obtain valid results. The planning
and design of simulation studies has been the subject of years of research and a variety of
workflows and frameworks have been developed. A comprehensive recent research on this
was done by Schmidt in [135]. At this point, the author refers to the recent research by Gil
et al. [58], by Teran-Somohano et al. [143], and by Ruscheinski et al. [129] as representative
examples.

The focus of this work is the development and implementation of an architecture for the
automation of simulation studies based on defined targets. The starting point for this is
the architecture developed on the basis of the SES/MB framework according to Schmidt
[135]. This architecture has been successfully used in projects of the Computational
Engineering and Automation (CEA) research group at the Hochschule Wismar, University
of Applied Sciences, such as in the common project with the University of Bremen which
was supported by the Deutsche Forschungsgemeinschaft (DFG): Model-based Planning
of Energy-Efficient Process Chains in Machining Component Production with System
Entity Structures (Modellbasierte Planung energieeffizienter Prozessketten in der spanenden
Bauteilfertigung mit System Entity Structures, GZ: BR825/62-2 PA631/2-2, PA631/2-3).
However, Schmidt’s [135] architecture assumes that only one specific target simulator is
integrated and that it is connected to a compatible environment with numerical experiment
methods. This condition is met in his choice of MATLAB/Simulink to implement a
prototype.

Building on Schmidt, according to Chapter 1, the focal points of the architecture to be
developed in this work are:

• the integration of various target simulators,

• the organization of MBs with models usable by different target simulators,

• the removal of existing restrictions on the pruning of SES with multiple aspects,

• improved tool support for SES modeling through online error checks, and

• the use of standards to support the exchange of SES models with other software
systems.

Topic 3 has already been discussed in Chapter 3 and topic 4 and 5 are self-explanatory
in terms of motivation. The motivation for topic 1 and 2 is also obvious. In the following,
the motivation of topic 1 and 2 is discussed under the aspect of validation in Modeling
and Simulation (M&S). As discussed in Section 2.4.1 operational validity is supported by
the architecture as well.

Since the development of the architecture focuses on the integration of different simulators
and the organization of a generic MB, aspects of the generation of simulation models for
different simulators and the execution of simulation runs are dealt with superficially, while
their integration with other numerical methods is in the background.
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4.2 Analysis of an Architecture for Automating
Simulation Experiments

An architecture for automation of simulation-based experiments based on the SES/MB
framework is introduced in Pawletta et al. [111] and Schmidt et al. [137] and further
developed by Schmidt in [135]. The architecture complements the classic SES/MB
framework with the following components and methods:

• an Experiment Control (EC) for the specification of experiment goals and steps of
an experiment process,

• a combined MB&Experiment Method Base (EMB) that is a repository with ba-
sic system models and experiment methods, such as optimization methods like
Nelder/Mead etc.,

• a pruning method for automated processing of an SES to derive an admissible
simulation-based experiment configuration,

• a build method for generating an Executable Simulation-based Experiment (ESE),
and

• an Execution Unit (EU) for the execution of generated ESEs.

According to Schmidt, an experiment process, in short an experiment, can consist of
several simulation-based experiments, defines necessary parameters, evaluates results of
single simulation-based experiments, and determines overall results of the entire experiment.
The complemented architecture is presented in Figure 4.1.
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Figure 4.1: SES/MB&EMB-based architecture for automating a set of simulation-based experi-
ments developed in style of Schmidt [135].

In the modeling phase a set of alternative system configurations is specified in an SES. A
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system configuration representing a simulation-based experiment according to Section 3.3.3
(Figure 3.15) comprises of an Experiment Method (ExM), a Simulation Method (SnM), and
the Simulation Model (SM) with Experimental Frame (EF) and Model Under Study (MUS).
Note, that a system configuration represents a simulation-based experiment and that the
SES/MB framework has to generate an ESE. For this purpose, the MB is extended to
an MB&EMB. That means, in the modeling phase all necessary basic system models,
including EF components and the different ExMs have to be organized in the MB&EMB.
In addition, the MB&EMB has to contain an SnM. Furthermore, the experiment goals
and the experiment process need to be defined in the EC unit. The EC can be specified in
different ways, for example as a simple control script or as a finite state machine.

The EU is a kind of wrapper for the target simulator and its experiment environment
used in the architecture. The wrapper provides an Application Programming Interface
(API) that can be used by the EC. Schmidt [135] assumes that only one type of target
simulator is integrated into the architecture. Moreover, it is integrated into an environment
with experiment methods, such as numerical optimization methods.

In the execution phase, a model and experiment configuration, which represents one
simulation-based experiment, is derived from the set of configurations specified in an SES
using automated pruning of the SES. For the automated derivation of a configuration, SES
variables (SESvars), which are input variables of the SES/MB framework, are assigned
values in the EC. The values can also be assigned reactively on the basis of experiments
that have already been carried out. The result is a Pruned Entity Structure (PES) that can
be flattened to a Flattened Pruned Entity Structure (FPES) as described in Chapter 3. It
should be emphasized again that the PES or FPES both describe a model configuration and
its integration into a simulation-based experiment. Based on the configuration information
in the PES or FPES, the build method generates an ESE using basic system models, EF
components, an ExM, and the SnM organized in the MB&EMB. The EC receives the
generated ESE and can add or update information to the execution of the ESE. Such
information can be, for example, data for the SnM, such as the duration of a simulation run,
or data for the ExM, such as the termination accuracy in a numerical optimization. The
full configured ESE is sent to the EU, executed under its control in a sequential or parallel
fashion and after completion the experiment results are returned to the EC. The EC
then analyzes the results. Thus, the derivation and generation of subsequent simulation-
based experiment configurations can be controlled reactively based on simulation-based
experiments already carried out. The necessity for reactivity is already shown by the
control example introduced in Section 2.5.1. The simulator explicitly shown in the EU in
Figure 4.1, again emphasizes that the SnM, as shown in Figure 3.15, is only an interface
component and not the target simulator itself.

In Schmidt’s [135] architecture, a generated ESE is always specific to a target simulator
with integrated experiment execution environment. Schmidt provides the proof of concept
with a prototype implementation for the MATLAB/Simulink environment. However,
Schmidt [135] does not investigate a simulator-independent description and execution
of simulation-based experiments. The SES represents a nearly simulator-independent
specification of experiment configurations, but the basic models and the experiment
methods organized in the MB&EMB are simulator dependent. The component EC can be
specified in any language or notation independent of a specific target simulator. According
to Figure 4.1, the SES/MB framework and the EU must provide well-defined interfaces
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(APIs) that are used by the EC.

The SES/MB framework includes the data structure of SES as well as the data structures
of PES and FPES based on it, the model and experiment methods repository MB&EMB,
and the methods pruning, flattening, merge, and build. The latter form the API of the
framework. According to the discussion in Sections 2.5.3 and 3.1, the SES represents a
simulator-independent specification of experiment configurations. In contrast, according
to Sections 2.5.3 and 3.2.2, simulator-specific basic models are organized in the MB. The
same applies to experiment methods in the EMB.

The implementation of a completely simulator-independent SES is often difficult in
practice. If parameterizations for basic models in the MB are specified at the leaf nodes of
the SES, these parameterizations must be compatible with the adjustable parameters of
the basic models or explicitly adapted by the build method. An analogous problem can
occur when specifying coupling relationships, since simulators use different input/output
interfaces for basic models, such as port names or port types.

The methods merge, pruning, and flattening are simulator-independent. They work
with the data structure of the SES and the derived data structures of the PES or FPES.
The build method, on the other hand, which creates an executable ESE using the PES
or FPES and the simulator-specific components of the MB&EMB, must be implemented
simulator-specifically.

As mentioned above, the EU represents a wrapper for a target simulator including the
associated experiment environment of the target simulator. It provides the EC with a
defined interface for executing simulation-based experiments on a target platform using
simulator-specific interfaces of the target platform.

4.3 Approaches to Support Multiple Simulators

According to Section 4.2, the build method represents the real challenge in supporting
multiple simulators. The build method represents the union of the challenging components
mentioned in Section 3.3.4. The basic models in an MB have so far been considered as
simulator native components. Consequently, these components also have a simulator-
specific interface using an appropriate syntax and semantics, such as:

• (i) different port names and port types,

• (ii) different parameters and names of parameters, and

• (iii) different parameter meaning.

To support different simulators, all basic models in an MB including the components of
the EF and the SnM must have corresponding compatible interfaces.

Consequently, differences of the individual simulators must be resolved both in port
names and port types and different parameter meanings must be aligned. As a result,
several simulator-specific MBs are required for different simulators so far. Simulator-
specific SnMs are organized in the MBs to account for the configuration interfaces of the
particular simulator. This is a crucial difference to Schmidt’s [135] approach, where only
one SnM needs to be defined since only one simulator is supported. The build method
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must support the different simulator-specific MBs, which means a specific model builder
for each target simulator. This approach is called native approach in the following.

An alternative approach is offered by the concept of model exchange using Functional
Mock-up Interface (FMI) according to Section 2.4.3. It organizes simulator-independent
components in the form of Functional Mock-up Units (FMUs) in an MB. A build method
generates simulation models as simulator-independent FMUs. Because each simulator is
configured using its own interfaces, the SnM must still be implemented in a simulator-
specific manner. This approach is called FMI-based approach in the following.

In the following, only simulator-independent model generation and execution in terms
of simple simulation-based experiments according to Section 3.3.3 are considered. The
generation of executable complex simulation-based experiments based on ExMs organized
in an MB according to Schmidt [135] is not considered. The approach requires that the
M&S environment supports immediate integration of an SnM with various numerical ExMs.
This requirement is not met by a large number of M&S environments. The framework
presented in Section 4.4 takes an alternative approach.

In the next two subsections, different approaches to organize the MB as well as to
implement the build method are discussed for the native approach as well as for the
FMI-based approach.

4.3.1 Native Approach

The native approach requires that a separate MB is created for each supported simulator
and simulator-specific model builders are created. With the native approach, different
conventions of the simulators regarding ports can be solved by embedding basic models in
subsystems, if these support a configuration of ports. The subsystems are organized as basic
systems in the native MB. Different approaches for adapting different parameterizations
and interpretations of parameters are presented below.

Preconfigured MB The simplest approach is to organize all basic models preconfigured
in a simulator-specific MB. This approach often leads to many basic models in the MB.
Hence, it will be hard and costly to maintain. Sometimes simulators need specific basic
models, such as special blocks for output variables.

Parameter Adaptation in the Model Builder This approach takes advantage of the
fact that an individual model builder must be created for each simulator. In the model
builders, simulator-specific adaptations of basic models can be made, e.g. setting of
the correct parameters and adaptation of its syntax etc. A disadvantage is that much
simulator-specific code must be implemented in the model builder.

Extend the MB This approach is based on the extension of the MB by a special function.
This function adapts settings and syntax of parameters to configure the basic models.
Any additional blocks needed for a simulator can be added and configured. Moreover,
the function can code coupling information for using the additional blocks during model
building. This leads to less simulator-specific code in the model builder, but coding the
special function for configuration is costly and error prone for complex models.
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Disadvantages of the native approach are that both simulator-specific MBs and simulator-
specific model builders are required. The maintenance of different MBs is error prone
and costly. Also, the effort and error-prone nature of creating simulator-specific model
builders should not be underestimated. To overcome these issues, an FMI-based approach
is explored below.

4.3.2 Functional Mock-up Interface based Approach

The FMI-based approach, unlike the native approach, requires only one MB and one model
builder. When using FMI, the most obvious approach is to organize FMUs in the MB.
These can be exported from any simulation program with FMI support. The basic models
in the MB thus have compatible interfaces and can be used with various simulators that
support FMI. The configuration and linking of basic models to an overall model by the
model builder according to the information in the PES or FPES can be done according to
different approaches.

Using the Target Simulator The basic models are imported into the target simulator
and configured according to the PES or FPES. In the next step, the coupling information
is evaluated and an overall model is generated. The generated model is simulator-specific.
This approach requires an extensive API of the target simulator, since the configuration
of the basic models and their linkage is done in the target simulator after import. Since
the configuration of the model is done using the target simulator, the requirement of a
simulator-independent model builder is not met.

Using the Target Simulator with Intermediate Simulator In this approach, the in-
dividual FMUs (basic models) are configured before import into the target simulator.
For this purpose, the FMUs are imported into a simulator with comprehensive API,
the intermediate simulator, and configured in it according to the PES or FPES. After
configuration, the individual basic models are exported as configured FMUs and organized
in the MB. Accordingly, target simulators no longer need to support the configuration
of FMUs. The disadvantage of this approach is that importing and exporting FMUs is
computationally intensive. Therefore the aim of FMI technology is not to build libraries
of small FMU components (Junghanns and Blochwitz [71]). The generation of a complete
model by linking the configured basic models is still done in the target simulator. Thus,
the requirement of a simulator-independent model builder is not fulfilled. One advantage
of this approach is that the structure of the model is accurately represented in the target
simulator.

Using an Intermediate Simulator and Export an Entire Model as FMU In this
approach, FMUs are imported from the MB into an intermediate simulator with com-
prehensive API, configured in it according to the PES or FPES, and coupled to form
an overall model. This overall model is then exported as a model as FMU. This model
FMU can be run in any target simulator that supports FMI. The approach only requires a
simulator-specific model builder for the intermediate simulator, which generates the model
FMU for all target simulators. The disadvantage of the approach is that the structure of
the model is not represented in the target simulator. It is a blackbox model. Thus, its
structure cannot be changed and the single model components cannot be debugged easily.
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However, single model components can be debugged, if the model FMU specifies ports to
the model components. By connecting the ports to instruments in a simulation tool, the
behavior of the individual model components in the model FMU can be captured.

Using the new FMI companion standard System Structure & Parameterization (SSP),
the generated model FMU can consist of one or more FMUs including parameterizations.
With the software architecture presented in Section 4.2, this is not necessary because
different structural variants are derived by pruning the SES and customized models are
generated.

The FMI-based approaches support model generation for multiple simulators using one
MB. The first approach requires an extensive API of the target simulator. This requires
extensive support of the target simulator by the model builder. In the second approach,
the use of the target simulator’s API is limited to the import of FMUs. In the third
approach apart from the import of FMUs the API of the target simulator is not used and
thus this approach fulfills the requirement of a cross-simulator model builder.

4.4 Architecture Supporting Various Simulators
and its Implementation as Python Toolset

The section introduces the overall architecture and basics of a prototype implementation
in Python. After that the components and their implementation in Python software tools
are discussed in detail. Special attention is paid to the support of the build method for
different simulators. Both, system classes and their support in different M&S tools are
highlighted and tool-specific features and limitations are underlined. Differences in model
execution are explained. Finally, the generation of non-simulator-specific applications is
presented.

4.4.1 Overview of the Architecture

Based on the architecture for automating simulation experiments analyzed in Section 4.2 for
a specific M&S environment, such as MATLAB/Simulink, an SES/MB-based architecture
for simulator-independent specification, generation, and execution of simulation models is
presented. Furthermore, its prototypical implementation as a Python toolset is discussed.
Figure 4.2 shows the components of the architecture, the basic relations, and the assignment
of software tools. Additionally, it shows the basic steps of M&S using the architecture. In
Figure 4.3, the relations are detailed in the form of interactions. The architecture includes
the three components: (i) SES/MB framework, (ii) Experiment Control (EC), and (iii)
Execution Unit (EU). The components are prototypically implemented in the form of four
Python tools: (i) SESToPy, (ii) SESMoPy, (iii) SESEcPy, and (iv) SESEuPy.

In the modeling phase, a FoM is first specified as SES according to Figure 4.2. The
modeling of the SES can be done modularly. With the merge method several SES can be
composed to one SES. Modeling and merging of SES is supported by the tool SESToPy
(System Entity Structure Tools in Python). In an MB, basic models are organized as
simulator native and/or FMU components. In addition, the EC defines experiment goals
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Figure 4.2: (left) SES/MB-based architecture for simulator-independent specification, generation,
and execution of simulation models and their prototypical implementation as Python
toolset; (right) basic steps for M&S using the architecture.

and experiment steps for conducting a Simulation-based Experiment (SBE). The EC is
coded software-wise in the form of a script based on the template SESEcPy (System
Entity Structure Experiment control in Python).

The basic steps in the execution phase of a simple SBE are: (i) model building, (ii)
simulator configuration, and (iii) simulation model execution. The model building starts
with the derivation of a concrete system configuration by pruning the SES on the basis
of an assignment of the SESvars given by the EC. Optionally, flattening can be used
to reduce the hierarchy depth. The methods pruning and flattening are supported by
SESToPy using an API. The exchange format is an Java Script Object Notation (JSON)
or Extensible Markup Language (XML) representation of the SES, as shown in an example
in Appendix D. The next step is the build operation, which includes the generation of an
SM based on the information coded in the PES or FPES and using components from the
MB. The MB can include simulator native basic models and FMUs. The build operation
supports native and FMI-based model building according to Section 4.3. According to
Figure 4.3, a simulator-specific model can be a Simulation Model Executable (SME) or
a Simulation Model Representation (SMR) depending on the target simulator. An SME
can be executed directly by the target simulator, while an SMR contains instructions on
how to create a model in the target simulator. The SMR is thus a kind of “makefile“ for a
simulator. The additional config file stores information of the model building, such as the
assignment of SESvars, the target simulator, and the interface used, which can be native
or FMI. The config file serves as interface specification for the model builder, EC, and EU
components. The data exchange between the components is done via links. The complete
build operation is implemented in the tool SESMoPy (System Entity Structure Model
builder in Python).

After model building, the EC adds experiment-specific information about the simulator
configuration to the config file. These are for example the Ordinary Differential Equation
(ODE) solver to be used and the simulation start time tstart as well as final time tfinal .
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Figure 4.3: Basic interactions for generating and executing simulation models using the SES/MB-
based architecture.

The SME/SMR and the config file are sent to the EU. The EU represents a wrapper for
different target simulators. If the SM is available as SMR, the SMR is converted to an
SME in the target simulator. Subsequently, the simulation is executed. Simulation results
are read from the target simulator and returned to the EC. There, a decision about a new
assignment of the SESvars and the start of another cycle can be made reactively or the
experiment can be terminated. The EU is implemented in the tool SESEuPy (System
Entity Structure Execution unit in Python).

The basic M&S steps on the right side in Figure 4.2 show the process by the exam-
ple of MATLAB/Simulink. The individual components of the architecture and their
implementation in software tools are discussed in detail below.

4.4.2 Modeling and Processing an SES

The SES ontology has been comprehensively introduced in the previous sections. However,
only few software tools exist for SES-based modeling, with none supporting the extensions
developed as part of this work. Furthermore, SES tools as in Schmidt [135] or Zeigler and
Sarjoughian [165] are based on specific M&S environments. A validation of the introduced
architecture and the SES extensions requires a prototypical implementation. Therefore an
appropriate tool, called SESToPy has been developed.

66



4 An Architecture for Automating Simulation Experiments with Different Simulators
Based on the SES/MB Approach

SESToPy is a modeling tool implementing a graphical SES editor and all related methods
for processing an SES. Figure 4.4 shows a screenshot of a specific SESToPy view. In the
editor an SES tree describing different system configurations can be specified interactively
in a file browser view. For every node specific attributes or rules, such as couplings,
specrules etc. can be defined according to the SES theory. Furthermore, global settings,
such as SESvars, semantic conditions etc. can be defined. SES functions (SESfcns)
have to be specified as Python functions and imported into SESToPy, which performs a
comprehensive syntax check.

Figure 4.4: Screenshot of SESToPy with loaded SES of the feedback control system example
extended by nodes specifying an SnM and parameters for performing a parameter
study.

SESToPy supports all methods for processing an SES as introduced in Section 3.2.2,
i.e. merging, pruning, and flattening. The pruning and flattening methods can be used
interactively or as API methods. SESToPy supports the export of SES, PES, and FPES
as JSON or XML files. The XML export is based on the schema mentioned in Section
3.2.1.

For supporting the modeling process an additional tool, called SESViewEl (System
Entity Structure View Electron), has been implemented. SESViewEl runs in parallel
mode to SESToPy and provides a second SES view, as shown in Figure 4.5. Changes in
the SES using SESToPy are updated on the fly in the tree view of SESViewEl.

The screenshot of SESToPy in Figure 4.4 shows the SES of the previously introduced
feedback control system example. This example does not include an EF. However, the
SES includes the two nodes simMethod and expMethod, but they have no mb-attribute as
discussed in Section 4.2 and 4.3. The ExM describes parameters for a simulation study.
The SnM defines attributes, which specify the name of a concrete simulator, such as
OpenModelica or Simulink, and its interface. The interface can be native or FMI. These
attributes are configured using the SESvars mysim and myinterface as depicted in the left
part of Figure 4.4. The SESvar feedforward is part of the SES in Figure 4.4.
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Figure 4.5: Screenshot of SESViewEl showing the corresponding tree view of the SES in Figure
4.4.

In contrast to the architecture of Schmidt [135], SnMs and ExMs are not organized in the
MB. However, the SES may contain nodes for parameterizing SnMs and ExMs. The model
builder must recognize these nodes using predefined keywords, such as SIMULATOR,
INTERFACE, PARAMVARY, etc., and generate specific instructions for the configuration
of the target simulator and integrated numerical experiment methods, respectively.

4.4.3 Organizing an MB

For model generation basic models need to be organized in an MB. Their interface must be
compatible to supported target simulators regarding ports and configuration parameters.
In Section 4.3 the native as well as the FMI approach are discussed in order to achieve
a common interface. Thus, in this section organizing native MBs as well as an MB
using the FMI approach are discussed. The creation of native MBs using the simulation
tools Simulink [87], OpenModelica [103], and Dymola [38] as well as DEVSimPy [22] is
demonstrated. Moreover, the generation of FMUs using OpenModelica is described as
well. However, an FMU can be exported from any simulator supporting FMI. While
simulator-specific MBs are one or several simulator-specific files, a simulator-independent
MB is a directory containing FMUs. The organization of native MBs is discussed first.

For OpenModelica and Dymola a package in a specific file serves as MB. These simulation
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tools build on the Modelica language and use the Modelica Standard Library as basic
simulation library [91]. Modelica is a declarative modeling language especially designed
for physical modeling. A Modelica model component is described by differential, algebraic,
and discrete equations and it is structured in an object-oriented way. The Modelica
Standard Library provides general definitions for constants, units, continuous and physical
model components, and system utilities. Thus with Modelica signal flow-oriented as well
as physical models can be described. Based on the Modelica Standard Library other
components in source code can be defined and other libraries, e.g. commercial libraries
supporting a special domain, can be added. In the MB basic models are organized in
source code or components that subclass existing components and adapt the interface, so
a Modelica model can be described simulator-independently in the SES.

For MATLAB/Simulink in a specific Simulink file basic models derived from the Simulink
Standard Library are organized. Subsystems are created that enclose and unify the ports
of the basic models in the Simulink MB. In addition a function can be added. This function
is executed before a simulation run and enables the configuration of basic models in the
MB. Thus, all parts of the interface of Simulink basic models can be customized in the
MB and a Simulink model can be described simulator-independently in the SES.

For DEVSimPy introduced by Capocchi et al. [23] the MB can be set up with atomic
or coupled DEVSimPy models. The models can be specified in Python language using
a text editor and can be stored and structured in libraries. Complex simulation models
are created manually by using drag and drop from model libraries. DEVSimPy acts as
an user-friendly interface for collaborative M&S of DEVS systems implemented in the
Python language. It provides a Graphical User Interface (GUI) for the PyDEVS (Bolduc
and Vangheluwe [15]) and PyPDEVS (Tendeloo and Vangheluwe [142]) simulation kernels.

A native Modelica MB for the feedback control system is presented in Figure 3.6 in
Section 3.2.3. An MB for MATLAB/Simulink is presented in Figure 4.6. This MB uses
subsystems to abstract the ports of the basic models. A template of an additional function
to enable the configuration of basic models according to the discussion in Section 4.3.1 is
presented in Listing 4.1.

Figure 4.6: MB for the feedback control system with Simulink-based basic models.
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1 % the current model
2 model = strtok ( get_param (gcb , ’Parent ’),’/’);
3 % find all blocks
4 h = find_system (model , ’LookUnderMasks ’, ’on ’, ’SearchDepth ’, 2);
5 %go through all blocks
6 for k=1: length (h)
7 if endsWith (h{k}, ’block name ’)
8 % set parameters for block as defined in the SES
9 elseif ...

10 ...
11 end
12 end

Listing 4.1: Template of an additional function to configure basic models for a Simulink
MB.

In contrast to the native approach the FMI approach needs only one MB for various
simulators built of FMUs. Therefore components can be exported from any simulator
supporting FMI. OpenModelica e.g. has an interface to export FMUs for model exchange
and for co-simulation. This interface can be used to export single or coupled components
as FMUs manually and organize them in a directory forming a simulator-independent
MB. Since OpenModelica is used as intermediate simulator, the MB can contain FMUs as
well as Modelica basic models. An MB with Modelica basic models as well as FMUs is
presented in Figure 4.7.

Figure 4.7: MB for the feedback control system with Modelica and FMI components.

4.4.4 Defining Experiment Goals and Steps in the Experiment
Control

In the EC the experiment specific goals and experimentation steps are defined as a script
using the template SESEcPy. Regardless of a specific experiment, calls to SESToPy,
SESMoPy, and SESEuPy must always be executed by the EC. Therefore SESEcPy is
structured in a general and an experiment specific part. SESEcPy assigns values to the
SESvars based on the experiment description and starts the execution of the first SBE.
This means SESToPy is called first for pruning with the current SESvar values and for
flattening as well as SESMoPy for model building. The success of each step is returned to
SESEcPy, otherwise the experiment is terminated. In the EU SESEuPy the execution
is done returning concrete simulation results, which are evaluated in SESEcPy. Then,
SESEcPy decides reactively how the experiment is continued by setting new values for the
SESvars or SESEcPy terminates the experiment.
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In the introduced feedback control system example with optional feedforward control
the experiment specific part of SESEcPy includes the following steps:

• Try a system structure without feedforward control part.

◦ Set the SESvar feedforward=0 and simulate with different PID parameters, which
are defined in the SES at node expMethod.

• If the experiment goals are reached with this system structure and one PID parameter
set:

◦ then return this structure and PID parameter set as overall result.

• Else try a system configuration with feedforward control part.

◦ Set the SESvar feedforward=1 and simulate with different PID parameters.

• If the experiment goals are reached with this system structure and one PID parameter
set:

◦ then return this structure and PID parameter set as overall result.

• Else:

◦ return that the goals cannot be reached with these system structures and PID
parameters.

In addition to the SESvar feedforward, the SESvars mysim and myinterface are set
for configuration of the SnM for the next simulation. Additionally, simulator-specific
information are added to the config file for the execution process as already mentioned in
Section 4.4.1. These are information such as tstart and tfinal , solver settings, sequential or
parallel execution etc. An excerpt of a possible EC script for the feedback control system
example is presented in Appendix E.

4.4.5 Model Building with SESMoPy

SESMoPy is a model builder, which supports the build method for several simulation
environments in two ways: (i) native model generation and (ii) model generation based
on the FMI definition. With the native model generation approach SESMoPy can build
models for simulators supporting signal flow-oriented, physical, and discrete event models,
whereas the latter type of models cannot be supported using the FMI approach. An
overview and SESMoPy’s model generation process are presented in an activity diagram
in Appendix F. Essential aspects of the procedures for model generation are discussed in
more detail in this section and for software generation in Section 4.4.7.

SESMoPy supports to build models of system classes using following simulators:

• signal flow-oriented systems using Simulink, OpenModelica, or Dymola,

• physical systems using OpenModelica or Dymola, and

• discrete event systems using DEVSimPy.

Subsequently, differences of these system classes are discussed in order to derive conclu-
sions to implement model builders for the different simulators. In addition, the supported
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simulators are briefly analyzed. Simulink with its blockset extensions and the Modelica-
based tools OpenModelica and Dymola support the simulation of hybrid models, which
are composed using components of different system classes. Moreover, they support the
FMI standard. According to Elmqvist et al. [47] or Zupančič et al. [172] these tools are
general M&S tools that can be used for different domains. Although OpenModelica and
Dymola use nearly identical semantics, their APIs are different. DEVSimPy supports M&S
of Discrete Event System (DES), based on Discrete Event System Specification (DEVS).
Although DEVS forms a basis for all system classes (Vangheluwe [152]), DEVSimPy is
focused on DES, but independent of any domain. SESMoPy is open to integrate other
simulators such as Ptolemy II. Domain-specific tools regarding the characterization in
Section 2.3.2 are not discussed in this work.

Signal Flow-oriented Systems Signal flow-oriented systems are represented by signal-
flow graphs. The nodes represent units with inputs and outputs, which manipulate
incoming signals and generate output signals (Mason [84]). The edges map signals between
the units and have a direction of flow. In case of dynamic systems, a signal flow graph
represents a set of linear and non-linear differential equations. This approach is classified
as causal modeling. In M&S environments the nodes of signal-flow graphs are called blocks
that have a certain behavior. The behavior of these blocks can be parameterized. Blocks
define input and output ports. A model is built by coupling blocks. Output ports are
connected with input ports.

Physical Systems Physical systems are described in an acausal form. The equations
are stated in a neutral form without consideration of the computational order. Like
signal flow-oriented systems physical systems can be modeled with blocks representing
subsystems. The subsystems are connected by edges. Compared to signal flow-oriented
systems the edges are not directed and one connection contains several variables of different
type, i.e. potential variables and flow variables (Tiller [144]).

Discrete Event Systems Discrete event systems are characterized by events and states.
State changes are caused by events, which can occur at any point in time in R+

0 . The
set of system states over time is finite. There are different abstractions for modeling
DES, such as the world views: event-oriented, activity-oriented, and transaction-oriented.
Furthermore, there are state-based or network-based approaches, such as statecharts or
Petri nets (Cassandras and Lafortune [26]). A general basis on which all approaches can
be mapped is the DEVS theory according to Zeigler et al. [170]. DEVS theory strictly
distinguishes between model specification and execution algorithms. Model specification
is done with atomic systems, which represent dynamic behavior, and coupled systems.
Coupled systems specify a set of subcomponents and coupling relations. Subcomponents
can be of type atomic or coupled, allowing modular-hierarchical models to be composed.

OpenModelica and Dymola A core concept of all Modelica-based tools is the separation
between the modeling language Modelica [91] and the algorithms for executing models.
There are a number of M&S tools supporting Modelica, such as OpenModelica [103],
Dymola [38], or SimulationX [48], and others. Due to the same underlying modeling
language models created in one tool can easily be adapted for another tool. In this work
the focus is put on OpenModelica and Dymola. The Modelica language is based on a
Standard Library as well as various additional domain specific libraries. The libraries
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organize parameterizable components with well defined port-based interfaces, which are
physical or signal flow-oriented. Modelica supports hierarchical model structures.

Modelica models for OpenModelica or Dymola are coded in a textfile with the file
name extension mo. This textfile.mo is called an SME, because it is directly processed
by the OpenModelica or Dymola compiler. For the simulation the tools provide various
configurable solvers. The compilation is performed in two phases. A Modelica compiler
translates a model into a General Purpose Language (GPL) like C++, which is then
translated by another compiler into a platform specific executable program. The tool
controls the compilation and execution and collects all model variables, which can be
depicted in a graphical way. The execution can be controlled by tool-dependent scripts.
These scripts use tool-specific API commands, for instance to load a model, execute a
simulation run with respective simulation parameters, and copy results in a file.

MATLAB/Simulink Simulink [87] is a signal flow-oriented M&S tool. Specific blockset
extensions, such as Simscape or SimEvents, are not considered. Simulink is based on
a Standard Library as well as various additional libraries. The libraries organize pa-
rameterizable components with ports that are identified by different numbers. Simulink
supports hierarchical model structures. A Simulink model can be saved as SME or as SMR.
For the simulation Simulink provides various configurable solvers, like OpenModelica or
Dymola. The generation and execution of a Simulink model can be fully controlled using a
MATLAB-based API. There are MATLAB commands for the specification, configuration,
and coupling of Simulink blocks as well as for setting simulation parameters and the
execution of a simulation. Using these commands, an SME can be generated from an SMR
inclusive all simulation parameters. Thus, the entire execution process can be controlled
by a MATLAB script. Unlike OpenModelica and Dymola, Simulink models usually specify
the output of simulation results with special blocks in the model.

Of course, one could build an SME for Simulink as well using the Simulink modelfile
format. The reason to build an SMR is practical. Since the SMR is a textfile, there is no
need of an accessible Simulink in the model builder, but only when executing the model.
This provides a clear separation between model generation and model execution as depicted
in Figure 4.3. Hence, the build process can be executed on a regular computer, while
the execution can be done on a more powerful computer or even on a High Performance
Cluster (HPC).

DEVSimPy DEVSimPy is a DEVS-based discrete event M&S tool as introduced in
Section 4.4.3. It provides direct support for processing SES/MB-based model specifications
(Capocchi et al. [24]). DEVSimPy imports the XML structure of a PES or FPES and
generates a DEVS-based model using basic models from the MB in Python source code.
Then DEVSimPy links the model source code with its simulation kernels and translates the
code to an executable Platform-specific Model (PSM). SESMoPy uses the model generation
mechanisms of DEVSimPy. The simulation parameters for the executable can be set from
the EC.

Model Building Using an FMI-based MB and OpenModelica as Intermediate Simu-
lator In Section 4.3.2 approaches for using a general MB for various simulators based on
FMI are discussed. SESMoPy builds on the third approach and uses OpenModelica as
intermediate simulator to export an entire model as FMU that can be executed by different
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simulators. Hence, the MB can organize basic models as FMUs as well as Modelica
components. Figure 4.8 shows the basic steps for generating a model FMU. To simplify
model building, the simulator independence of SES is restricted in that the specification of
coupling relationships and parameter configurations for basic models must be in Modelica
compliant syntax.

Basic model is FMU Basic model is OpenModelica block

in OpenModelica MB

OpenModelica

Import in OpenModelica

Build model: configure

blocks in OpenModelica

Export the model as FMU

Target simulator: Simulink

.m script with instructions on:

- load Simulink model

- import model FMU

Target simulator: OpenModelica / Dymola

model .mo file with instructions on:

- instantiate model FMU

Build the model

Figure 4.8: Basic steps for generating a model FMU and its preparation for a target simulator.

In case the basic model is an FMU, it is imported into OpenModelica and code is
created as Modelica block interfacing functionality of the FMU. Afterwards the block
is configured according to information in the FPES. Otherwise, if the basic model is a
Modelica component, it is configured directly. For both cases finally a fully configured
OpenModelica model is built using the couplings specification in the FPES. For usage
of a model FMU by the Simulink simulator, the configured model FMU is automatically
extended by output blocks, because Simulink does not return all model variables by default.
This is depicted in Figure 4.9 by the example of the introduced feedback control system.

In OpenModelica output blocks depend on the type of the variable to be returned.
The type of such variables can be determined from coupling information in the FPES.
According to Section 3.2.1 the SES specifies port types in addition to port names. Figure
4.9 represents only signal flow-oriented couplings. Physical couplings are more complex,
because physical ports comprise potential, flow, and stream variables, as shown by an
example in Section 5.2. The fully configured OpenModelica model is exported as one
model FMU with the added outputs as interface.

For FMI several tools were developed to support the development of software supporting
FMI, some of which are introduced in Section 2.4.2. One tool is the “FMU Compliance
Checker“ developed by the company Modelon AB [95]. SESMoPy makes use of this tool
to check the model FMU exported from OpenModelica. The checked model FMU can be
used in all simulators supporting FMI. The next steps of model building depend on the
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Figure 4.9: OpenModelica model extended with output blocks.

target simulator as depicted in Figure 4.8. The information about the target simulator
and the kind of model building, native or FMI-based, is coded in the FPES at the node
simMethod. In case of the target simulators OpenModelica and Dymola a textfile.mo is
written with instructions to instantiate the FMU for execution in the target simulator.
The FMU with the textfile.mo represents an SME according to Figure 4.3. In case of target
simulator Simulink a textfile.m, called M-script, is written with instructions to instantiate
the FMU in Simulink. The FMU with the textfile.m represents an SMR according to
Figure 4.3.

The Config File To support several simulators the config file is introduced for the native
and FMI-based model building approach. SESMoPy creates this file and stores information
from the FPES specified at the nodes simMethod and expMethod as discussed in Section
4.4.2. Subsequently, this file is extended by the EC.

4.4.6 Executing a Simulation Model in SESEuPy

The EU SESEuPy is called by the EC SESEcPy. In SESEcPy the config file is extended
with experiment specific information. In Section 4.4.4 this is specified as values, such as
the solver algorithm, simulation start and final time (tstart , tfinal) etc. Furthermore, it
needs to be set which variables have to be evaluated for the experiment. For the feedback
control system example these values are the setpoint, the disturbance, and the controlled
variable.

For execution SESEuPy receives a link to the config file and a number of SMEs or SMRs.
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The execution can be done sequentially or in parallel. For parallel execution SESEuPy
creates a process for the simulation of each model and summarizes the simulation results
on return of each process. On the executing machine it is now important that the target
simulator is installed and its API methods are accessible. Depending on whether the
model is an SME or SMR and thus on the target simulator the procedure differs.

For OpenModelica or Dymola as target simulator it is passed an SME that can be
executed directly. SESEuPy generates a simulator-specific execution script with following
commands:

• load the model,

• load the MB,

• execute the simulation according to the configuration passed in the config file, and

• get the simulation results and return them.

For Simulink as target simulator it is passed an SMR. Simulink returns simulation
results using output blocks on model level. Under the requirement that the SES specifies
simulator-independent model configurations, the output blocks are not modeled. In case
of an FMU, the extension of a model with outputs for each component in SESMoPy as
shown in Figure 4.9 is done to provide an interface for the FMU to generate. Variables
of interest must be linked to Simulink output blocks for the native and FMI-based case.
Therefore, SESEuPy extends the SMR by commands for generating output blocks and
their couplings using the experiment specific information in the config file. In contrast to
the target simulators OpenModelica and Dymola no separate execution script is needed
for Simulink. Instead, the execution data is added to the SMR. Then SESEuPy calls
MATLAB to generate an SME from the SMR according to Figure 4.3 and to execute the
SME. In Appendix G an excerpt of an SMR and the generated SME is presented for the
native case. Figure 4.10 shows an example of a generated SME for the FMI case.

Figure 4.10: By SESEuPy generated SME for Simulink using FMI with added output blocks.

Finally, the EU SESEuPy collects simulator-specific the simulation results and sends
them to the EC SESEcPy.
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4.4.7 Generation of Non-Simulation Specific Applications

Due to the structure and well-defined interfaces the architecture and its prototype can also
be used for modular-hierarchical component-based non-simulation specific applications.
Subsequently, this is discussed for a component-based software system.

In the SES different variants of a software system are coded. Software components
are organized in a repository that represents the MB. The mb-attributes at leaf nodes in
the SES refer to these software components. In a function-oriented software system each
component represents one function. Other attributes at leaf nodes can specify values for
variables in the respective functions. Couplings then specify the structure of the software.
Ports represent input or output parameters of functions. The node simMethod in the SES
can be left away, because no simulator data has to be specified. The node expMethod can
be used to specify different parameter configurations for the software system.

During pruning parts of the SES tree are cut away leaving only one structure. So the
pruning and flattening processes do not differ from the derivation of simulation model
variant. In the build process one directory for a software variant is created. In this
directory software components are copied from the repository, which are linked by nodes in
the FPES. Next, variables of the selected functions are set on source code level according
to attributes specified at leaf nodes of the SES. During model generation, a coupled
system consisting of basic systems is created on the basis of the FPES. In the same way,
it is possible to create a main function during software generation. Using the coupling
relationships, a sequence or hierarchy of function calls including the transfer parameters is
then created. A small example for software generation is presented in Appendix I.

4.5 Summary

In this chapter, an architecture for performing cross-simulator automated studies of FoMs
using the SES/MB approach has been discussed. For this purpose, an analysis of the
architecture presented in Schmidt [135] is done first. In this architecture, the classical
SES/MB framework is extended by additional software components and the MB by
ExMs to form an MB/EMB. The MB/EMB is specific to a M&S environment. Not only
simulation models of a FoMs, but simulation-based experiments can be generated. To
execute these experiments, the M&S environment must provide an execution environment
for the numerical ExMs in addition to the simulator. Furthermore, parameterizations as
well as coupling-specific properties, such as port types, of basic models have to be mapped
in the SES. This leads to a not completely simulator-independent SES.

A central challenge is the organization of a simulator-independent MB. The specification
of simulator-specific aspects in the SES is omitted and SMs for different simulators can be
generated. For the realization of a simulator-independent MB, a native and an FMI-based
approach have been discussed. The native approach requires the extension of an MB by a
function that implements simulator-specific adjustments during model generation. The
specification of this function is costly and error-prone. Furthermore, the native approach
requires simulator-specific model builders. With the FMI-based approach, no specific
extensions to the MB are required. Exporting an entire model as FMU also achieves the
requirement for a simulator-independent model builder. A disadvantage is that an FMU
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is a blackbox model and thus cannot be debugged easily component by component.

In analogy to Schmidt [135], an SES/MB-based architecture for cross-simulator auto-
mated experimentation was designed and implemented as a Python toolset [51]. It supports
interactive specification of SES and model generation for different target simulators using
the native as well as the FMI-based approach. The EC and EU allow an automated
execution and evaluation of simulation experiments. Since only a few target simulators
support integration with numerical ExMs, such as MATLAB/Simulink, this aspect was
not investigated.

Models can be assigned to different system classes. Simulators support different system
classes. Based on the native approach, model builders for signal flow-oriented models
were developed for the target simulators MATLAB/Simulink, OpenModelica, and Dymola.
Furthermore, a model builder for DEVSimPy was created for discrete event-oriented
models. Based on the FMI-based approach, model generation of signal flow-oriented and
physical models was discussed using OpenModelica, Dymola, and MATLAB/Simulink as
examples. The automated execution of simulation experiments was demonstrated using a
signal flow-oriented model as an example.

Finally, the generation of a software system using the architecture was discussed.
Analogies to the generation of simulation models were pointed out. The main difference is
the absence of a simulation method. Thus the SES/MB approach is also suitable for the
component-based generation of software systems.
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In the previous chapter the new System Entity Structure (SES)/Model Base (MB) ar-
chitecture and its implementation in the form of a Python toolset were introduced and
considered in terms of the signal flow-oriented feedback control system used in the thesis.
In this chapter further examples of the application of the architecture are given with a
focus on SES/MB-based modeling and native as well as Functional Mock-up Interface
(FMI)-based generation of simulation models. Automation of simulation experiments and
execution of simulation models are not considered. In the examples a Discrete Event
System Specification (DEVS)-based system and a physical system are considered.

5.1 M&S of a Discrete Event System with Different
Levels of Detail Using Native Model Generation

In this example a DEVS-based system with different levels of detail is examined. At first,
modeling systems with different levels of detail is motivated. Ideas for modeling such
systems based on the SES/MB approach are presented and a real-world case study is
introduced. An SES describing system configurations for the system in this case study is
developed, the associated MB is shown, a possible Pruned Entity Structure (PES) and its
Flattened Pruned Entity Structure (FPES) are derived, and finally a model generated.

5.1.1 Multi-Resolution M&S

The permissible and reasonable level of detail of a model is determined by the objective of
the investigation (Fishwick [49]). Models often need to be developed with different levels
of detail. An example is the offline use of a model in the development phase and the online
use of a model under real-time conditions in the operation phase. The execution of the
models is often done with different simulators in the different usage phases. Models of
this type are called multi-resolution systems according to Zeigler et al. [169]. The authors
state that considering systems with different levels of detail is often beneficial:

• lower level of detail brings advantages in simulation speed and is easier to understand
(limited parameters, consideration of groups of entities, ...) and

• higher detail enables more accurate simulation results and is valid in a higher scope
of experimental frames.
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Often, a simulation with a lower level of detail is sufficient to investigate a desired
objective. Differences in detail need not apply to all model components of a system, such
as shown by Santucci et al. [131] and Pawletta et al. [112].

In Chapter 2 a model was defined according to Zeigler et al. [170] as an abstract
expression of objects of the real or imaginary world. Furthermore, it was said that a model
always represents only a section of a larger world (Bossel [17], Zeigler et al. [167], Zeigler
et al. [170], and many others). Depending on the application area and the study objectives,
different degrees of abstraction with different forms of abstraction are used in modeling.
According to Zeigler et al. [170] they are called simplification methods. In the following,
the simplifications

• aggregation and omission as well as

• time abstraction

are discussed. Aggregation is the combining of system components in a single compo-
nent and omission is the neglect of system components. Time abstraction is a special
simplification in the modeling of dynamic systems. This includes, for example, with which
temporal resolution dynamic behavior is abstracted, which Santucci et al. [131] refer to as
time granularity.

According to Zeigler et al. [170], related models of different levels of detail from which
candidate models are derived also form a Family of Models (FoM) as defined in Section
2.1. To describe the relationships among models with different details of abstraction,
several authors such as Santucci et al. [131], Benjamin et al. [10], or Fishwick and Lee
[50] propose a hierarchical modeling with different levels of abstraction. Hierarchical
abstractions can be used to selectively hide elements that are not relevant to the objective
of an investigation (Benjamin et al. [10]). However, according to Fishwick and Lee [50], it is
important to have the ability to traverse levels of abstraction. Santucci et al. [131] propose
an approach to model abstraction hierarchies based on the classic SES/MB framework.
The proposal considers both, the composition of models with different levels of detail and
the composition of models with different temporal granularity. For the specification of
abstraction hierarchies, they extend the SES with two new descriptive nodes. A pruning
operation is not specified for the extended SES. In the author’s opinion, an automated
pruning of the SES is made more difficult by introducing the new node types.

For modeling abstraction hierarchies, the general idea of Santucci et al. [131] was taken
up and an SES/MB-based modeling approach was developed by the author without
additional extensions to the SES (Folkerts et al. [52]). Thus, candidate models can be
derived automatically using the regular pruning operation. The necessary interface and
time resolution compatibility for the composition of models of different abstraction levels
is solved via a Downward Atomic Model (DAM) and an Upward Atomic Model (UAM) per
abstraction level. The DAM and UAM are application-specific basic models organized in
the MB. In the SES, the DAM and UAM are referenced in attributes of ordinary entity
nodes, and associated parameter settings are specified.

For comparison with the approach of Santucci et al. [131], a FoM of a watershed according
to Santucci et al. [131] was specified with an SES (Folkerts et al. [52]). Executable
simulation models were generated using the MB of Santucci et al., which was extended
to include DAMs and UAMs. Thereby, the dynamic model components are organized in
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a DEVS-based MB. The MB is created with the simulation software DEVSimPy. The
investigations were performed with the architecture developed in Chapter 4. For the
generation of DEVSimPy simulation models a simulator-specific build operation was
implemented. The native interface must be used for modeling DEVS-based systems due to
the limitations of FMI. In the following, the watershed problem is briefly introduced and
the specification of a FoM with models of different level of detail with an SES is explained.

5.1.2 Introduction of the Case Study

The example concerns a watershed belonging to a mountainous part of France Alpes
(Coron et al. [36]). It involves the rain and snow precipitations over a period of one year.
Precipitation can be classified according to its nature into solid or liquid. Depending
on the time of year and the geographical area concerned, the amount of solid or liquid
precipitation will be different. The proportion moves between the two extremes: only snow
or only rain. When precipitation falls as snow, the hydrological response of the watershed
is not the same as observed in case of rain. There is a lack of response in the short term
watershed due to the accumulation of solid precipitation in the form of a snow cover on
the soil surface. When the conditions of melting are met, which can occur several days to
several months after the occurrence of precipitation, this water is remobilized. It causes
a delayed reaction of the watershed. The dynamic behavior of the watershed is mainly
influenced by precipitation and temperature conditions. Usually, the precipitation data
are day related and the temperature data are hour or day related. Based on these facts,
the dynamic behavior of a watershed can be considered on the basis of different levels of
detail. According to Santucci et al. [131] the level of detail can be considered regarding the
decomposition of influences, called abstraction hierarchies, and the temporal granularity
of data. They introduced the following levels of detail:

• In the simplest case, called watershed abstraction hierarchy level 0, the behavior is
modeled just considering the percentage of rainfall on a daily basis.

• At the watershed abstraction hierarchy level 1, the behavior is expressed in more
detail by taking into account the altitude and the flow associated with the three
hydrogeological layers: (i) soil, (ii) surface and (iii) aquifer. At this hierarchy level,
the altitude influence is broken down in two different levels of detail, called altitude
abstraction hierarchy level 0 and level 1.

• Starting from the altitude abstraction hierarchy level 1, snow effects are considered
on a daily or hourly basis, which are differentiated as basin time granularity level 0
and level 1.

From the above considerations follows a set of model variants with different levels of
detail, which are specified using an SES.

5.1.3 M&S of a Watershed System

First, the different system configurations following from the levels of detail are modeled in
an SES. Subsequently, a DEVSimPy MB of the watershed system and a possible model
are shown.
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Modeling of System Configurations Figure 5.1 shows an excerpt of the SES with the
essential parts for describing abstraction hierarchies. The coupling relationships are not
shown.

root

rootDEC

|
Rain

|
Temp

| |
ToDisk

|

|

{mb='MB/Rn'} {mb='MB/Tmp'} {mb='MB/TDk'}

Figure 5.1: An excerpt of the SES for specifying model variants of the watershed with model
components of different levels of detail.

As described in the feedback control example the aspect nodes describe system composi-
tions, the specialization nodes variation points, and the leaf entity nodes links to basic
models in the MB. The specification of the individual node attributes is analogous to the
feedback control example. The variation points in the form of specialization nodes describe
selection conditions with respect to their child nodes and thus the selection of submodels
of different levels of detail including different time granularity. The third hierarchy level of
the SES shows with the leaf nodes DAM and UAM the referencing of the above mentioned
specific basic models for the adaptation of input and output interfaces and time resolutions.

The basic properties to consider when modeling a watershed are the amount of rain and
the ambient temperature. Thus, the root node of the SES is composed of the leaf entity
nodes Rain and Temp, as well as the inner entity node WS describing the watershed itself,
and an auxiliary leaf entity node ToDisk. The composition is expressed with the aspect
node rootDEC. The coupling relations are specified in the attribute cplg1. Each leaf node
has an mb-attribute, which defines a reference to a basic model in the MB. The watershed
WS can be either of the type SimpleLayer or of the type WS1. SimpleLayer constitutes the
watershed abstraction hierarchy level 0, whereas WS1 constitutes watershed abstraction
hierarchy level 1. For selection during pruning, the watershed WS has a descriptive node
of type specialization WSSPEC as child. Specrules defined as attribute of WSSPEC are
evaluated. They allow the selection of one child node depending on the SES variable
(SESvar) WSLevel, which has to be defined before pruning. WS1 is composed of the four
sibling nodes: DAM, Altitude, EWS, and UAM. The entity WS1 represents a coupled
model in the context of modular-hierarchical modeling. It specifies a more detailed version
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of the WS as its sibling node SimpleLayer. To accommodate the finer time resolution and
interfaces of this abstraction layer, this layer specifies references to corresponding interface
models in the MB using the UAM and DAM nodes, which solve these problems.

The EWS node shown in bold is an entity node at which another SES defining the
system configuration of an elementary watershed could be merged according to the full
specification in Santucci et al. [131]. It can be considered as a leaf node for the purpose
of this study. The fourth sibling of the composition of WS1 describes the Altitude of
the watershed. Depending on the level of detail the Altitude can be of different type.
This part of the SES is not described here, since the modeling of the abstraction levels is
done analogously as described before. Different temporal granularity can be treated like
hierarchical abstraction from the point of view of the SES and its methods. However, the
full SES and all couplings are presented in Appendix H.

DEVSimPy Watershed MB The MB organizes like in Santucci et al. [131] and Folkerts
et al. [52] basic models according to the DEVS specification. For this example the
Watershed library has been defined (Santucci et al. [131]). Figure 5.2 shows an excerpt of
this library. Basic models are also shown, which are not referenced in the mb-attributes in
the excerpt of the SES shown in Figure 5.1. In order to generate an executable model, the
basic models have a simulator-specific interface. This means that simulator-specific model
builders are required according to Section 4.3.1.

Figure 5.2: Excerpt of the MB in DEVSimPy.

Derivation of a Possible PES and Generation of an Appropriate Simulation Model
The pruning method is used to select an abstraction variant and thus a model variant.
For this purpose, values are assigned to the SESvars and a selection for a model variant
is made according to the specrules. Couplings are adapted as described for the feedback
control system example in the previous chapters. A section of a possible PES is shown
in Figure 5.3. This PES represents the variant with a higher level of detail in WS and
Altitude.

The PES can be flattened for easier application of the build method. The resulting
FPES and the couplings for the highest level of detail of the watershed system are depicted
in Figure 5.4. The corresponding model is shown in Figure 5.5 with the component EWS
representing a coupled system. The build method is not discussed in detail, because it
corresponds to the presentation in Chapter 4. However, the FPES in Figure 5.4 includes
nodes that are not shown in the SES and PES in Figures 5.1 and 5.3. Different PES, the
corresponding FPES, and generated models with different levels of detail are presented in
Appendix H.
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Figure 5.3: An excerpt of a possible PES of the watershed.
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Figure 5.4: A possible FPES of the watershed representing the highest level of detail.

Figure 5.5: The model built with the FPES in Figure 5.4 and the MB in Figure 5.2.
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5.2 Feedback Control System with Physical System
Using Functional Mock-up Interface based
Model Generation

This example builds on the FMI-based model generation introduced in Chapter 4, showing
the generation of physical models using the SES/MB approach in conjunction with FMI.
In the first section, the introduced feedback control system is extended by a physical
process and the integration into simulation experiments is discussed. The differences of
physical models to signal flow-oriented models will be discussed. Starting from the already
introduced SES, the modifications are discussed, the MB is introduced, and the derivation
of a possible FPES is shown. Furthermore, the coupling relations and the build method
with an FMI-based model builder are explicitly discussed.

5.2.1 Modeling of a Physical Process for the Feedback Control
System Example and the Integration into an
Experimental Frame for Simulation Experiments

As introduced in Section 2.3, Cyber-Physical Systems (CPS) combine both physical
components and software components. CPS are often modeled with the Modelica language
(Buffoni et al. [21]). A physical component can, for example, consist of electronic and
mechanical subcomponents. These have a transfer behavior and can be described with
transfer functions or physical models. In the example of the feedback control system, the
real process to be controlled can be modeled as a physical component as an alternative to
the transfer function. Similarly, disturbances can also be modeled physically. Accordingly,
in the models of the feedback control system in Figure 3.7, the components procUnitSys,
sourceDist, tfDist, and addDist can be replaced by a physical system. This is shown in
Figure 5.6.
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Figure 5.6: Feedback control system without feedforward part and with a physical process model.

The physical process is represented by an RC element (resistor and capacitor). The
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voltage across the RC element corresponds to the manipulated variable, the voltage
dropping across the capacitor to the controlled variable. An RC element represents a
system with a PT1 transfer behavior. The controlled variable is disturbed by a voltage
which acts on the RC element after a certain time via a resistor. Together with the
capacitor, the disturbance forms another RC element with PT1 transfer behavior. The
time constant τ of an RC element is calculated by:

τ =R ·C (5.1)

The time constant τ corresponds to the values selected in Section 2.5.1. The component
dimensions are given in Figure 5.6. The controlled system and the disturbance system
influence each other, which is why the system behavior with the selected dimensions is
only approximately identical to that in Section 2.5.1.

The integration of the feedback control system with physical components into an
Experimental Frame (EF) for simulation experiments is shown in Figure 5.7, which is
based on Figure 3.13. The EF is essentially the same as the EF in Section 3.3.2, except
that the generation of the disturbance signal is adapted. As can be seen in Figure 5.6, in
addition to the process, the disturbance is also represented as a physical model. Therefore,
the component of the source disturbance in the generator changes, while the transducer
and acceptor remain identical. In Figure 5.7, a step-shaped voltage signal is selected for
the source disturbance.

ctrlSys

SM

source

Sys

-

feed-

backSys

ctrlPID

Sys

generator

at simulation start time t0 at current simulation time at simulation time t�nal

I E
(t

0
) 

=
 {

d
is

t,
 k

, 
T

i,
 y

m
a
x
, 
tm

a
x
}

a
c
c

c
s

k

Ti

ymax
acc

tmax
cs

d(t)

(t0)

(t0)

(t0)

(t0)

y(t)

EF

transduceracceptor

ymax(t)

tsettling(t)

Yout

tout

V

O
E
(t

�

n
a
l)
 =

 {
V

, 
Y

o
u
t,
 t

o
u
t}

mux

demux

s
te

p
D

is
t

s
ig

n
a
lV

o
lt

a
g
e

R=200e3 �

resistor

C
=

1
0

0
e
-6

 F

c
a
p
a
c
ito

r

v
o
lt

a
g
e
S
e
n
s
o
r

V

ground

groundDist

R=100e3 �

resistorDist

Figure 5.7: (based on Figure 3.13) Integration of the new feedback control system with physical
process model in the existing EF and adaptation of the EF generator component.

In the SES/MB-based architecture for multiple simulators presented in Chapter 4,
physical systems are discussed in Section 4.4.5. Thereby, the essential difference to
signal flow-oriented systems in the context of model building with SESMoPy is described.
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The main differences identified are that edges are non-directional and represent energy
flows modeled with potential variables and flow variables. According to the Modelica
specification, a third type of physical modeling variables are stream variables, which
describe a bi-directional flow of matter with convective transport of specific quantities
(specification in [91]). Stream variables are transmitted for example via FluidPorts. When
modeling with electronic components, voltage is a potential variable and current is a flow
variable. The heat dependence of resistors can be modeled using the unconnected (red)
HeatPorts shown in Figures 5.6 and 5.7, which can be used to model the potential variable
temperature and the heat flow. Stream variables are not needed.

The model structure shown in Figure 5.6 is based on components of the Modelica
Standard Library. The use of an MB with Modelica standard components supports the
generation of executable models for different Modelica target simulators. If FMI-based
components – Functional Mock-up Units (FMUs) – are organized in the MB, they can be
integrated into a Modelica model. To generate an overall model for different non-Modelica-
based target simulators, the overall model must be exported as a model FMU according
to the discussion in Section 4.4.5.

5.2.2 SES/MB-based Modeling of the Feedback Control
System with Physical Process Model and Derivation of a
Possible Flattened Pruned Entity Structure

Section 3.2.3 explained the SES/MB-based modeling of the feedback control system with
a transfer function-based process and disturbance model. Figures 5.8 and 5.9 show the
SES and the corresponding MB according to the model structure in Figure 5.6. The MB
contains signal flow-oriented, physical, and FMI-based components. The Modelica-based
components are shown with their respective icons, while the FMI-based component is
shown as a file with the extension fmu. The integration of the Model Under Study (MUS)
with the EF is not discussed here, as it is essentially the same as the representation in
Section 3.3.2.

The former nodes procUnitSys, sourceDist, tfDist, and addDist, which describe the
process and the disturbance path, are now changed in the SES to nodes for mapping
the physical components. The entity node procUnitSys is extended by an aspect node
procUnitSysDEC, which describes the composition of voltage source signalVoltage, resistor,
capacitor, and ground. Analogously, the disturbance source sourceDist is composed of
stepDist and groundDist. The node tfDist is replaced by resistorDist and the node addDist
by voltageSensor. The nodes expMethod and simMethod correspond to the specification
in Section 4.4.2. A possible FPES for the feedback control system without feedforward
control part with the components of the physical submodel is shown in Figure 5.10.

At this point, the mb-attribute in the FPES is to be considered in more detail. Signal
flow-oriented and physical components in an OpenModelica MB as well as FMI-based
components in files are referenced. When using the FMI-based model builder, the link to
an MB or an FMU basic model is given in the mb-attribute. The coupling relations of the
FPES are shown in Table 5.1. Ports in the signal flow-oriented model part are called u
for input ports and y for output ports. Physical ports in electrical components can be a
positive pin p or a negative pin n. Exceptions are the voltage source signalVoltage and the
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simModel-ctrlSys

simModel-ctrlSysDEC

| |
sourceSys

| |
|

|

{mb='MB.mo/

        Constant'

  k=0              }

Figure 5.8: SES of the feedback control system with physical components without coupling
relations.

sensor voltageSensor, which have both types of ports. The type of a port is specified in the
signal flow-oriented model part as Signal Port Real (SPR) and in the physical model part
as Physical Port Electrical Analog (PPEA). PPEA describes an electrical pin via which
the potential quantity voltage and flow quantity current are transported.

Table 5.1: Coupling relations of the FPES in Figure 5.10.

Source node Sink node
EntityName Port Type EntityName Port Type
sourceSys y SPR feedbackSys u1 SPR
feedbackSys y SPR ctrlPIDSys u SPR
ctrlPIDSys y SPR signalVoltage v SPR
signalVoltage p PPEA resistor p PPEA
resistor n PPEA capacitor p PPEA
signalVoltage n PPEA capacitor n PPEA
capacitor n PPEA ground p PPEA
groundDist p PPEA stepDist n PPEA
stepDist p PPEA resistorDist p PPEA
resistorDist n PPEA capacitor p PPEA
capacitor p PPEA voltageSensor p PPEA
capacitor n PPEA voltageSensor n PPEA
voltageSensor v SPR feedbackSys u2 SPR
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Figure 5.9: MB for the SES in Figure 5.8.

Figure 5.10: A possible FPES of the feedback control system without feedforward control with
the components of the physical submodel.

5.2.3 Model Generation Using the Functional Mock-up
Interface

The model builder using FMI was discussed in Section 4.4.5 using the feedback control
system example as a signal flow-oriented model. FMI was motivated and developed with
the focus on physical systems. The FMI-based model builder implemented in SESMoPy is
used here.

An overall model is created from the FPES using the MB in OpenModelica. While
Modelica-based models from an MB are configured directly in OpenModelica, FMUs are
imported into OpenModelica before configuration. Then, in the overall model, input and
output interfaces are added for all model quantities. The configured overall model in
OpenModelica is shown in Figure 5.11.

While signal flow-oriented systems are extended by single output blocks as shown in
Figure 4.9, physical systems are extended by output blocks for all variables transmitted
over an edge. As shown in Figure 5.11, potential variables can be accessed in the connectors
at a time t as a scalar value. Flow variables, on the other hand, require a physical sensor
for scalar output. Since physical systems of different domains (electrical, mechanical,...)
have different variables in their connectors, different sensors are needed for each physical
domain. Thus, the type of the port of a coupling needs to represent the type of the physical
domain. In case of an electronic system, corresponding output blocks for the potential
variable voltage are inserted. Amperemeters for measuring the flow variable current are
inserted in series with the electronic components and their output is provided with an
output block in each case.
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Figure 5.11: OpenModelica overall model including all configured input and output interfaces.

Subsequently, the complete model is exported as model FMU. Due to the configured
interface, all model quantities calculated during the simulation and possibly required for
a simulation experiment can be accessed. According to Section 4.4.5, a separate model
FMU is created for each parameter variation specified in expMethod. Depending on the
target simulator specified in simMethod, either Simulation Model Executables (SMEs) or
Simulation Model Representations (SMRs) are created.

When the model is created, a configuration file is written. This file contains the
information specified in the expMethod and simMethod nodes, such as the target simulator,
the interface, and the parameter variations created for various model FMUs. Simulation
parameters are added to the configuration file in the Experiment Control (EC) (Section
4.4.6) so that SMEs or SMRs can be executed in the target simulator based on the
configuration file. Listing 5.1 shows the configuration file for the example model. Simulink
simulation results are shown in Figure 5.12. The value of sourceSys.y represents the
setpoint, stepDist.p.v the disturbance, and voltageSensor.v the controlled variable. The
plot is similar to the top left plot in Figure 3.17.
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1 Configuration file for model execution with SESEuPy .
2
3 SESVAR: feedforward = 1
4 SESVAR: mysim = Simulink
5 SESVAR: myinterface = FMI
6
7 MODELNAMEPARAM: Simulink_FCS_model_1 with varying parameterization: ctrlPIDSys:

k=1 Ti =1
8 MODELNAMEPARAM: Simulink_FCS_model_2 with varying parameterization: ctrlPIDSys:

k=5 Ti =0.5
9

10 MODEL: <path >/ Simulink_FCS_model_1 .m
11 MODEL: <path >/ Simulink_FCS_model_2 .m
12
13 SIMULATOR: Simulink
14 INTERFACE: FMI
15
16 MODELBASE: (<path >/ Simulink_FCS_model_1 .m) <path >/ FMU_FCS_model_1 .fmu
17 MODELBASE: (<path >/ Simulink_FCS_model_2 .m) <path >/ FMU_FCS_model_2 .fmu
18
19 STARTTIME: 0
20 SOLVER: ode45
21 STOPTIME: 50
22 MAXSTEP: 0.1
23 EXECTYPE: sequential
24
25 NSIGANA: [’sourceSys .y’, ’stepDist .p.v’, ’voltageSensor .v’]

Listing 5.1: Configuration file for the feedback control system using the FMI approach.
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Figure 5.12: Simulation results of the overall model simulated in Simulink with the configuration
file in Listing 5.1.

5.3 Summary

In this chapter, two examples of the developed SES/MB architecture for simulation with
different simulators were shown.

In the first example, a concrete discrete event-oriented system with different levels of
abstraction was presented. Different abstraction levels of the system were specified in an
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SES. DEVS-based components were organized in an MB. DEVS-based systems represent
a superclass for discrete event-oriented systems. Model generation was done according to
the native approach for the DEVSimPy software.

In the second example, the feedback control system example was extended by physical
components that represent a real process. Furthermore, the integration with an EF for
simulation-based experiments was described. The SES for specifying the two different
system structures including different types of basic systems including physical ones was
discussed. To perform simulation-based experiments with the SES/MB architecture, a
Simulation Method (SnM) and an Experiment Method (ExM) were specified. Signal flow-
oriented, physical and FMI-based components are organized in the MB. The derivation
of a possible FPES was shown. Furthermore, an OpenModelica-based overall model was
generated and configured using the MB. By adding interfaces and exporting as FMU,
a so-called model FMU was generated, which is executable in all simulators with FMI
support.

With the two examples it was proven that with the introduced SES/MB architecture
executable simulation models can be generated across simulators for all system classes
described before. When using the FMI approach, the cross-simulator model generation
can be performed on the basis of a common MB.

The methods developed for Modeling and Simulation (M&S) can also be used for
non-simulation specific software applications. An example of this is shown in Appendix I.
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According to the formulated objectives, an approach for variant management of modular-
hierarchical and multifaceted systems using different Modeling and Simulation (M&S)
environments has been developed. Furthermore, a software architecture for M&S of Families
of Models (FoMs) was designed, which supports automation of model selection, model
generation, and simulation execution. The architecture was implemented prototypically in
the form of Python-based software tools using modeling standards and model exchange
standards [51]. The use of the developed methods and the software architecture was
investigated on the basis of different use cases from various application areas.

The System Entity Structure (SES)/Model Base (MB) approach was selected as the
basis for variant management and the derived software architecture. This has its origin in
simulation theory and was introduced by Zeigler [163]. The SES describes a set of system
configurations in the form of a tree structure in a restricted simulator-independent way,
while in an MB simulator-dependent dynamic basic systems are organized in a reusable
way as building blocks for the generation of overall models. The SES/MB approach defines
general methods for goal-directed selection of system configurations (pruning method)
and for generation of executable simulation models (build method). In Schmidt [135],
the SES/MB approach was extended towards variant management and the generation of
simulation-based experiments for a specific M&S environment. In this work, the software
architecture derived by Schmidt was partially built upon.

The analysis of existing works showed the challenges to achieve the formulated objectives
of this work. In the context of the SES, an extended algorithm of the pruning method
for the automated derivation of system configurations was developed. Furthermore, an
approach for the evaluation of hierarchical multi-aspect nodes was introduced. The
extension completely removes previous limitations in the automated pruning of SES.
Thus, the possibilities of SES-based modeling are significantly extended. In addition, the
specification of coupling relationships in an SES has been redefined. Thus, models based on
basic models of different system types from different domains, such as signal flow-oriented
systems, discrete event systems, physical systems, or software systems, can be specified
in an SES and generated using an MB. The investigations on the use of different M&S
environments showed that in simulation-based experiments the Experiment Method (ExM)
and Simulation Method (SnM) can no longer be organized in a generally valid way in an
overarching MB.

In the software architecture developed in this work for the automation of simulation-based
experiments using different M&S environments, the SnM and the ExM were outsourced
to components of the architecture. The architecture consists of the SES/MB framework,
a higher-level Experiment Control (EC), and an Execution Unit (EU). The EU provides
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an interface for the execution of models in the respective target simulators. For the
organization of components in an MB, two new approaches were developed as part of the
architecture. In the native approach, simulator-specific components and additionally a
simulator-dependent function are organized in the MB. The simulator-specific function of
an MB ensures that different simulator-specific MBs have a compatible interface to connect
to one SES. With this extension of the MBs, the specification of an SES becomes truly
simulator-independent. The second approach uses the Functional Mock-up Interface (FMI)
as the simulator-independent interface. In this approach, both FMI-based components
and simulator-specific components of an intermediate simulator can be organized in an
MB. An overall model is generated in the intermediate simulator, which is exported as an
overall model with FMI interface. This can finally be used in any target simulator with
FMI support.

The functionality of the methodological extensions and new developments as well as the
developed architecture were demonstrated by means of use cases and application examples
for different dynamic systems (signal flow-oriented systems, discrete event systems, and
physical systems) from different domains (environmental domain, control engineering,
electrical engineering). Furthermore, an example from software engineering was used to
show that the developed approach is also suitable for non-simulation-specific applications.

Cyber-Physical Systems (CPS) were mentioned in the thesis as an example of technical
systems that often reach a high degree of complexity. The work itself does not examine a
complete CPS in the form of a use case. However, use cases are considered that involve
subsystems of CPS. In Chapter 2, a simple control system was introduced as a use case
of a technical system. This contains two structure variants and considers two parameter
variants as an example. In Chapter 3, SES/MB-based modeling including the concept of
the Experimental Frame (EF) is demonstrated on this use case. Subsequently, in Chapter
4, this use case is used to demonstrate the basics of the developed software architecture.
In Chapter 5, the use of the developed methods as well as the software architecture were
practically examined on various use cases from different application areas and, in this
context, a physical process was also added to the control system. Altogether with the
considerations in the chapters two to five of the work the hypotheses one to three of the
introduction were examined and stated.

Chapter 4 introduced an SES/MB-based software architecture for automating simulation
experiments using various target simulators, which was implemented in a reusable manner
as a software prototype. Together with the use-cases considered in Chapter 5 and follow-up
uses of the software prototype at the University of Corsica, SPE Laboratory, UMR CNRS
6134 [24] and the University of Arizona, Department of Electrical & Computer Engineering
(use in engineering education by Professor J. Rozenblit), hypotheses four and five of the
introduction were stated.

The approach developed in this thesis supports a domain-spanning, systematic, and
partly simulator-independent model development as well as model generation. There
is a strict separation between the specification of dynamic behavior, model structures,
parameter configurations, and model variants as well as the execution (simulation) of
models. The associated software architecture supports an automation of simulation studies
considering different system variants from model selection to simulation execution. The
latter can be done sequentially as well as in parallel and with different target simulators.
Simulation studies can be executed reactively depending on previous simulation results.
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Variant studies with respect to different model structures require that the variants have
been specified in advance in the SES. Parameter configurations can be re-generated during
the investigation if the parameters have been modeled as variable parameters. Regarding
the principle application of the introduced approach, it has to be estimated that the
approach is very flexible and supports a high degree of automation. However, due to the
variety of methods and software used, additional training effort is required. Accordingly,
the effectiveness of the developed methods depends on the complexity and variety of a
planned investigation. The approach is not suitable for limited model investigations on a
small scale due to the training time.

In the thesis, the use of the developed methods was motivated in the context of the
development of CPS and an application example from the environmental sector was also
considered in the use cases. Typical further fields of application are seen in the planning
of complex production systems and in the virtual commissioning of control systems. In
both fields of application, the dynamic behavior of often complex systems is represented
in models, which are used to investigate the behavior and properties of systems under
various conditions. Especially when investigating control system variants, a high number
of variants quickly arises. Virtual commissioning often involves testing code on virtual
plant models via simulation. These tests require models with a high level of detail and
incremental development of models with varying levels of detail. The watershed example in
Chapter 5 demonstrates the suitability of the SES/MB-based approach to such problems.

With regard to the methodological further development of the presented approach,
investigations on the cross-simulator organization of MBs are to be mentioned in particular.
For continuous and physical system models, it was shown that FMI provides a solid basis
for this. Furthermore, it should be investigated whether the new FMI 3.0 standard and the
System Structure & Parameterization (SSP) standard offer advantages and simplifications
with respect to the application in the context under consideration. Since there is no
adequate standard for Discrete Event Systems (DES) so far, it should be investigated to
what extent the new standards are applicable to DES and alternative approaches should
be researched in order to enable an organization of simulator-independent MBs for all
classes of dynamic systems.

Regarding the developed software architecture and its prototypical implementation, it
has to be estimated that with the implemented tool SESToPy a user-friendly and stable
tool for the creation and processing of SES models is available. The Python-interpreter-
based EC is also usable with Python knowledge. Further need for investigation is seen
with the EU. This implements a kind of wrapper for used target simulators. The prototype
implementation supports OpenModelica, Dymola, Simulink, and DEVSimPy, but does
not yet support any commercial simulator for discrete event systems. OpenModelica and
Dymola share the Modelica library, but the Application Programming Interface (API) of
both programs differs. Due to the already discussed lack of a standard for cross-simulator
model exchange for DES, only the integration of a Discrete Event System Specification
(DEVS)-based simulator was investigated in this work. Analogous to a large number of
colleagues in the M&S community, the author sees DEVS as a generic basis for model
exchange, at least from a theoretical point of view.
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Appendix

A Formal Discrete Event System Specifications
According to Zeigler et al. [167] and Zeigler et al.
[170]

In this section the individual elements of the atomic and coupled Parallel Discrete Event
System Specification (PDEVS) algorithm are listed. The PDEVS algorithm is an extension
of the classic Discrete Event System Specification (DEVS) algorithm with a focus on the
treatment of parallel events. The PDEVS formalism of atomic and coupled discrete event
models is outlined in Table A.1.

Table A.1: PDEVS specification of atomic and coupled models based on Zeigler et al. [167] and
Zeigler et al. [170].

Atomic model Coupled model
M = (X,Y,S, δext, δint, δcon,λ,ta) N = (X,Y,D,Md|d ∈D,EIC,EOC, IC)

where
X = {(p,v)|p∈ IPorts,v∈XP}: set of input
ports and values

X = {(p,v)|p∈ IPorts,v∈XP}: set of input
ports and values

Y = {(p,v)|p∈OPorts,v ∈YP}: set of out-
put ports and values

Y = {(p,v)|p∈OPorts,v ∈YP}: set of out-
put ports and values

S: set of sequential states D: set of component names
δext: Q×X→ S external state transition
function

Md: set of PDEVS components

δint: S→ S internal state transition func-
tion

EIC: set of external input couplings

δcon: S×X→ S confluent state transition
function

EOC: set of external output couplings

λ: S→ Y output function IC: set of internal couplings
ta: S→ R+

0,∞ time advance function
with

Q = {(s,e)|s ∈ S,0 ≤ e ≤ ta(s)} with e
elapsed time since the last state transition:
set of total states
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B Pruning Design Patterns

As discussed in Section 2.5.2, Feature Models (FMs) are widely used in engineering. In the
context of feature modeling, four kinds of features are used: (i) mandatory features (logical
AND), (ii) alternative features (logical XOR), (iii) optional features, and (iv) or-features
(logical OR). In analogy to the semantics of feature models and mathematical logical
expressions, patterns to express these relations with System Entity Structures (SES) are
presented here. The patterns in Sections B.1, B.2, and B.7 can be classified as mandatory
(logical AND). The patterns in Sections B.3, B.4, B.5, and B.6 can be seen as alternative
(logical XOR). For expressing optional features like pattern B.8 and OR features like
pattern B.9, an extension of the SES is used. The patterns in Sections B.10, B.11, B.12,
and B.13 are combinations of the previous mentioned basic patterns. A modification of
pattern B.7 is presented in pattern B.14.

B.1 Aspect Node

An SES tree with a single aspect is the simplest pattern given in Figure B.1. A coupled
system a consists of an entity b and an entity c. For model generation aspect nodes need
to define the special attribute for couplings, while the leaf nodes have the mb-attribute
attached referring to a basic model. Note, that the types of the ports of basic models,
which the couplings connect, are left away to keep matters simple. Also note, that the
derived Pruned Entity Structure (PES) and Flattened Pruned Entity Structure (FPES) are
identical to the SES. The resulting abstract, simulator-independent model on the right
side is given to illustrate what kind of model structure would result from the FPES. In
the next sections coupling definitions, the FPES, and the resulting model are not given.

a

aDEC

b c

couplings

couplings={(a, in1, b, in),

                    (b, out, c, in),

                    (c, out, a, out1),

                    (a, in2, a, out2)}

pruning build

in1 out1

in2 out2

a

b c

in inout out

a

aDEC

b c

couplings

{mb=

'MB/B'}

{mb=

'MB/C'}

{mb=

'MB/B'}

{mb=

'MB/C'}

SES PES

flattening

a

aDEC

b c

couplings

{mb=

'MB/B'}

{mb=

'MB/C'}

FPES

type: B type: C

Figure B.1: SES with aspect node, derived PES, FPES, and the corresponding model.

B.2 Multi-Aspect Node

In Figure B.2 a similar case to B.1 is given. The system as consists of three children of
type b. Multi-aspect nodes need to define two special attributes, the attributes Number
of Replications (NumRep) and couplings. In this pattern the NumRep attribute is filled
with a hardcoded three, but the value could also be assigned dynamically by using an
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SES variable (SESvar) or SES function (SESfcn). When pruning a multi-aspect node
the NumRep attribute is evaluated and an aspect node with children of the same type
is created. The derived PES is similar to the PES in Figure B.1, except that there is a
third brother b3 and all children of as refer to the same model B in the Model Base (MB).
Children names are generated by appending a number to the entity name b to ensure that
the resulting siblings fulfill the axiom of valid brothers.

as

aMASP

b

numRep,
couplings

as

aDEC

b1 b2 b3

pruning

{mb='MB/B'}
{mb='MB/B'} {mb='MB/B'} {mb='MB/B'}

numRep=3

couplings

SES PES

Figure B.2: SES with multi-aspect node and one derived PES.

B.3 Specialization Node

An SES with a specialization node is shown in Figure B.3. Based on the specrule exactly
one child needs to be selected to construct a valid variant. Thus, after pruning the resulting
system can either be of type b OR of type c. The father inherits the attributes of the
child.

a

aSPEC

b c

pruning
b_a c_a

specrule

{mb=

'MB/B'}

{mb=

'MB/C'}

{mb=

'MB/B'}

{mb=

'MB/C'}

SES

PES1 PES2

specrule={VAR=='1'    b;

                  VAR=='2'    c}

SemanticCondition={VAR in ['1', '2']}
SESvar={VAR}

Figure B.3: SES with specialization node and both possible PES.

B.4 Aspect Siblings

If two or more aspect nodes are on the same hierarchy level, exactly one of them has to be
selected by evaluating the aspect rules of the aspect brothers. This is presented in Figure
B.4. The system a consists either of b and c or of d and e. The aspect rules one and two
define which branch is selected during pruning.
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a
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aspectrule2,

couplings2

couplings1={...} couplings2={...}

couplings1 couplings2

SES

PES1 PES2

Figure B.4: SES with aspect siblings and both possible PES.

B.5 Multi-Aspect Siblings

In the pattern shown in Figure B.5 two multi-aspect nodes are on the same layer. In
the first pruning step the multi-aspect nodes are resolved leading to two aspect nodes.
After this step, the resulting intermediate PES can be finally resolved as in Section B.4
for aspect siblings previously described. The system a consists either of b1, b2, and b3 or
of c1 and c2 depending on which child is selected based on the aspect rules.

a

aMASP1

b

numRep1=3

a

aDEC

b1 b2 b3

aMASP2

c

numRep2=2

a

aDEC

c1 c2

pruning
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'MB/B'}
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'MB/C'}
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'MB/B'}
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'MB/B'}
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'MB/B'}

{mb=

'MB/C'}

{mb=

'MB/C'}

numRep1,
aspectrule1,
couplings1

numRep2,
aspectrule2,
couplings2

couplings1 couplings2

SES

PES1 PES2

aspectrule1={VAR=='1'}

SemanticCondition={VAR in ['1', '2']}

aspectrule2={VAR=='2'}

couplings1={...} couplings2={...}

Figure B.5: SES with multi-aspect siblings and possible PES.

B.6 Aspect and Multi-Aspect Siblings

If there are more than one aspect nodes and multi-aspect nodes on the same hierarchy
level, the behavior is like aspect siblings after the multi-aspect node is resolved. The
pattern is shown in Figure B.6. After pruning the system is built up as before in Section
B.5.
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SESvar={VAR}

Figure B.6: SES with aspect and multi-aspect siblings and possible PES.

B.7 Specialization Siblings

If two or more specialization nodes are on the same hierarchy level, they will all be
evaluated. For the pattern depicted in Figure B.7, this means that a will specialize into
one of b or c AND into one of d or e. Which child of the specialization is taken depends on
the values of the SESvars and the specrules. If, for example, VAR1 is set to 1 and VAR2 is
set to 2, at specialization aSPEC1 the left child b is selected and at specialization aSPEC2
the right child e is selected. During pruning it depends on the pruning algorithm which
of the two specializations is evaluated first. In this pattern it is assumed that the left
specialization node aSPEC1 is evaluated first. The evaluation order influences what is the
resulting value of the mb-attribute since, according to the inheritance axiom, attributes
with the same name are overwritten in the parent node.

aSPEC1

b c

aSPEC2

d e

a

d_b_a e_b_a d_c_a e_c_a

AND

pruning

specrule2specrule1

specrule1={VAR1=='1'    b;

                    VAR1=='2'    c}

SemanticCondition={VAR1 in ['1', '2'] � VAR2 in ['1', '2']}

AND AND AND

{mb='MB/B',

  para1=[1,2]}

{mb='MB/C',

  para2=[3,4]}

{mb='MB/D'} {mb='MB/E'}
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[1,2]}

{mb=

'MB/E',

para1=

[1,2]}

{mb=

'MB/D',

para2=

[3,4]}

{mb=

'MB/E',

para2=

[3,4]}

specrule2={VAR2=='1'    d;

                    VAR2=='2'    e}

SES

PES1 PES2 PES3 PES4

SESvar={VAR1, VAR2}

Figure B.7: SES with specialization siblings and all four possible PES.

B.8 The NONE Element

The NONE element is an extension of the SES. Nodes can have the name NONE. A NONE
element for a leaf entity node means that if the NONE branch is selected during pruning,
the entity is not included at all. In the pattern shown in Figure B.8 the specialization has
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a child which is a NONE element. Hence, this SES can evaluate to NONE during pruning
based on the specrule. The system a can either be of type b or not existent at all.

a

aSPEC

b NONE

pruning b_a NONEspecrule

{mb=

'MB/B'}

{mb=

'MB/B'}

SES

PES1 PES2

specrule={VAR=='1'    b;

                 VAR=='2'    NONE}

SemanticCondition={VAR in ['1', '2']}

Figure B.8: SES with the NONE element at a specialization.

B.9 Express OR in the SES

The pattern in Figure B.9 shows an aspect node whose children are followed by specializa-
tions. Each specialization contains a NONE element (see Section B.8) as one child. For
expressing a logical OR, at least one specialization has to evaluate to a node not being
NONE, as coded in the semantic condition. By defining the specrules reasonably, the user
has to ensure that this is guaranteed and the semantic conditions are met. This pattern is
composed of the pattern in Section B.1 in combination with the pattern in Section B.8.
After pruning, the system a consists of b and c. System b in turn is of type bs or not
existent while c is of type cs or not existent. Couplings have to be justified when the tree
changes by evaluating nodes. Since the couplings are defined at the aspect node aDEC, it
is obvious that there is a need for the possibility to define variable couplings. Variable
couplings can be defined by SESfcns.

a

aDEC

b

couplings

pruning

{mb=

'MB/B'}

c

{mb=

'MB/C'}

bSPEC cSPEC

NONE NONE

specrule1 specrule2

bs cs
OR

a

aDEC

bs_b

couplings

NONE

a

aDEC

NONE

couplings

cs_c

a

aDEC

bs_b

couplings

cs_c
{mb=

'MB/B'}

{mb=

'MB/C'}

{mb=

'MB/B'}

{mb=

'MB/C'}

OR OR

SES

PES1 PES2 PES3

specrule1={VAR1=='1'    bs;

                    VAR1=='2'    NONE}

SemanticCondition={VAR1 in ['1', '2'] � VAR2 in ['1', '2'] � ¬ (VAR1 == '2' � VAR2 == '2')}

specrule2={VAR2=='1'    cs;

                    VAR2=='2'    NONE}

SESvar={VAR1, VAR2}

Figure B.9: SES to express OR.
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B.10 Two Specialization Nodes in One Path

During pruning specialization nodes inherit the attributes of the selected child and append
them to the father’s attributes as described previously. In Figure B.10, there are two
specialization nodes in one path. Additionally, the NONE element is used. This shall
clarify the axiom for attribute inheritance. During pruning, first aSPEC is evaluated. In
case the child c is selected, another decision for child d or child e is taken. In that case
the attributes of the child node of cSPEC are inherited to the first node.

a

aSPEC

b NONE

pruning b_a d_c_a

c

cSPEC

d e

e_c_a NONE

specrule1={VAR1=='1'    b;

                    VAR1=='2'    c;

                    VAR1=='3'    NONE}

SESvar={VAR1, VAR2}

SemanticCondition={VAR1 in ['1', '2', '3'] Ʌ VAR2 in ['1', '2']}

specrule2

specrule1

specrule2={VAR2=='1'    d;

                    VAR2=='2'    e}

{mb=

'MB/B'}

{mb=

'MB/D'}

{mb=

'MB/E'}

{mb=

'MB/B'}

{mb=

'MB/D'}

{mb=

'MB/E'}

SES

PES1 PES2 PES3 PES4

Figure B.10: Two specialization nodes in one path.

B.11 Specialization with Succeeding Aspect

Figure B.11 depicts a specialization node with a succeeding aspect node. This pattern is a
combination of a specialization node followed by a single aspect node. The system a can
be of type b or c, while b can be decomposed in d and e.

B.12 Specialization and Aspect Siblings

When aspect nodes and specialization nodes are brothers, the specialization node has to
be resolved first during pruning. If, additionally, an aspect node is below the specialization
node, during pruning two aspect nodes will become siblings. Since in this case the
occurrence of aspect siblings is not known until the first pruning step, aspect rules could
not be formulated beforehand. In order to tackle this the priority attribute for aspect
nodes was introduced. Throughout the whole SES aspect nodes get a unique number. If
during pruning aspect nodes become brothers, a decision as to which to choose can be
found. Nodes with higher priority numbers are priorized over those with lower numbers.
In Figure B.12, a pattern is given. The system a consists of b and c, if it is of type d. If it
is of type e, it can consist of b and c or f and g. In case that the system is of type e, a
decision as to which decomposition to take is made by the priority attribute.
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a

aSPEC

b

pruning c_a

c

bDEC

b_a

bDEC

SESvar={VAR}

SemanticCondition={VAR in ['1', '2']}

specrule={VAR=='1'    b;

                  VAR=='2'    c}

specrule

d e
{mb=

'MB/D'}

{mb=

'MB/E'}

d e
{mb=

'MB/D'}

{mb=

'MB/E'}

couplings

couplings

SES

PES1 PES2

{mb=

'MB/C'}

{mb=

'MB/C'}

Figure B.11: Specialization with succeeding aspect.

B.13 Several Multi-Aspects in a Path

If a multi-aspect node is followed by a second or even more multi-aspects, complexity of
resulting structures grows considerably. During pruning compliance with the SES axioms
has to be ensured and therefore some renaming operations are necessary. Figure B.13
depicts two successive multi-aspects where the NumRep variable of bMASP defines a
multiset. Renaming of b to b1 and b2, as necessary for children of multi-aspects and
explained in the pattern in Section B.2, results in renaming of bMASP to b1MASP and
b2MASP. Generally, one can say that renaming an entity node always calls for renaming
the following descriptive node as well. The first pruning step resolves the multi-aspect
aMASP to an aspect aDEC with two child nodes of type multi-aspect. In a second step the
child nodes are resolved to aspect nodes as well. Since the NumRep variable of b1MASP
and b2MASP was set via the multiset, variable couplings are necessary.

This example is intended to increase the understanding of the developed pruning
algorithm in Section 3.2.2. However, an enhanced approach for automatic pruning of
hierarchical multi-aspect nodes is introduced in Section 3.2.4.

B.14 Selection Constraints

A modification of the specialization siblings in Section B.7 is shown in Figure B.14. With
this pattern the use of selection constraints and semantic conditions to limit the possible
valid structures is pointed out. In FMs the corresponding constructs are known as require
and exclude. The dotted line from leaf node c to node d in Figure B.14 depicts a selection
constraint, which means that if c is selected at node a1SPEC, d needs to be chosen at
a2SPEC. The resulting PES is PES3. The current value of VAR2 does not matter for
the selection if VAR1 has the value 2. Another way to control possible variants are the
semantic conditions. The semantic conditions for value combinations of VAR1 and VAR2
interdict the selection of d if b is already selected.
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aDEC aSPEC

a
d_a

pruning

aDECcouplings,

priority couplings

eDEC
b c

{mb=

'MB/B'}

{mb=

'MB/C'}

d e
{para=

  [1,2]}

f g
{mb=

'MB/F'}

{mb=

'MB/G'}

b c
{mb=

'MB/B'}

{mb=

'MB/C'}

e_a

aDEC
couplings

b c
{mb=

'MB/B'}

{mb=

'MB/C'}

e_a

eDEC
couplings

f g
{mb=

'MB/F'}

{mb=

'MB/G'}

couplings,

priority

SES

PES1 PES2 PES3

{para=

  [1,2]}

SESvar={VAR}

SemanticCondition={VAR in ['1', '2']}

specrule={VAR=='1'    d;

                  VAR=='2'    e}

Figure B.12: Specialization and aspect siblings.

a
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  couplings=cpl}
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{couplings=cpl1}
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  p=200}

PES

{mb='/MB/C';

 

{mb='/MB/C';

 

{mb='/MB/C';

 

bMASP
{numRep=#{2,3}} 

  couplingsc
 
 
 

numRep=#{2,3}

couplings=SESfcn(numRep)

 

 

 

{switch numRep

  case 2: couplings=cpl1

  case 3: couplings=cpl2}

 

pruning (1st step)

 

intermediate PES

a

aDEC
{couplings=cpl}

b1

 

  p=#{1,'a',200}}

{mb='/MB/C';

 

b1MASP
{numRep=2, 

  couplings=cpl1}c

b2

 

  p=#{1,'a',200}}

{mb='/MB/C';

 

b2MASP
{numRep=3, 

  couplings=cpl2}c

 

a

aDEC
{couplings=cpl}

b1 b2

{couplings=cpl2}

Figure B.13: Successive multi-aspects with variable number of replications.
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a1SPEC

b c

a2SPEC

d e

a

f_b_ae_b_a

d_c_a

pruning
specrule2specrule1

specrule1={VAR1=='1'    b;

                    VAR1=='2'    c}

SESvar={VAR1, VAR2}

SemanticCondition={VAR1 in ['1', '2'] � VAR2 in ['1', '2','3'] � ¬ (VAR1=='1' � VAR2=='1')}

{mb='/MB/B',

  para1=[1,2]}

{mb='/MB/C',

  para2=[3,4]}

{mb='/MB/D'} {mb='/MB/E'}

{mb='/MB/F',

  para1=[1,2]}

{mb='/MB/E',

  para1=[1,2]}

{mb='/MB/D',

  para2=[3,4]}

specrule2={VAR2=='1'    d;

                    VAR2=='2'    e;

                    VAR2=='3'    f}

SES

PES2PES1

PES3

(VAR1 == '1', VAR2 == '3')(VAR1 == '1', VAR2 == '2')

f
{mb='/MB/F'}

selection constraint

(VAR1 == '2', VAR2 == '1' | '2' | '3')

Figure B.14: Variant restriction with selection constraints and semantic conditions.
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C Couplings of the Feedback Control System

Section 3.2.3 discusses the SES, the PES, and the FPES with their respective couplings.
While the couplings of the SES coding system configurations of a feedback control system
are given completely via a coupling list and an SESfcn, only selected couplings are shown
for the derived PES and the FPES. At this point, complete lists of the couplings of the
PES and the FPES are presented.

In Figure 3.4, the PES number 1 shows the variant of the feedback control system
without feedforward control. It only has the couplings cplg1. Furthermore, the PES
corresponds to the FPES, so that no further adaptation is necessary. Table C.1 shows
these couplings.

Table C.1: The couplings of the PES number 1 in Figure 3.4.

Source Sink
EntityName Port Type EntityName Port Type

cplg1
sourceSys y SPR feedbackSys u1 SPR
feedbackSys y SPR ctrlPIDSys u SPR
procUnitSys y SPR addDist u2 SPR
addDist y SPR feedbackSys u2 SPR
sourceDist y SPR tfDist u SPR
tfDist y SPR addDist u1 SPR
ctrlPIDSys y SPR procUnitSys u SPR

In Figure 3.4, the PES number 2 shows the variant of the feedback control system with
feedforward control. This variant has the couplings cplg1 and cplg2. These couplings
are given in Table C.2. When flattening, inner nodes are removed and the couplings are
adapted accordingly and united in the only cplg attribute as presented in Figure 3.5. These
adapted couplings of the FPES are presented in Table C.3.
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Table C.2: The couplings of the PES number 2 in Figure 3.4.

Source Sink
EntityName Port Type EntityName Port Type

cplg1
sourceSys y SPR feedbackSys u1 SPR
feedbackSys y SPR ctrlPIDSys u SPR
procUnitSys y SPR addDist u2 SPR
addDist y SPR feedbackSys u2 SPR
sourceDist y SPR tfDist u SPR
tfDist y SPR addDist u1 SPR
sourceDist y SPR fc_feedforwardCtrl u1 SPR
ctrlPIDSys y SPR fc_feedforwardCtrl u2 SPR
fc_feedforwardCtrl y SPR procUnitSys u SPR

cplg2
fc_feedforwardCtrl u1 SPR tfFeedforward u SPR
tfFeedforward y SPR addFeedforward u1 SPR
fc_feedforwardCtrl u2 SPR addFeedforward u2 SPR
addFeedforward y SPR fc_feedforwardCtrl y SPR

Table C.3: The couplings of the FPES in Figure 3.5.

Source Sink
EntityName Port Type EntityName Port Type

cplg
sourceSys y SPR feedbackSys u1 SPR
feedbackSys y SPR ctrlPIDSys u SPR
procUnitSys y SPR addDist u2 SPR
addDist y SPR feedbackSys u2 SPR
sourceDist y SPR tfDist u SPR
tfDist y SPR addDist u1 SPR
addFeedforward y SPR procUnitSys u SPR
sourceDist y SPR tfFeedforward u SPR
tfFeedforward y SPR addFeedforward u1 SPR
ctrlPIDSys y SPR addFeedforward u2 SPR
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D XML Structure of the SES of the Feedback
Control System

In Section 2.5.3 the SES/MB approach in the context of Model-Driven Engineering
(MDE) and Model-Driven Architecture (MDA) is discussed. A key requirement is the
interchangeability of models according to the MDA. In Zeigler and Hammonds [164]
and Zeigler and Sarjoughian [165] an Extensible Markup Language (XML) structure is
introduced for the classic SES/MB framework. The extensions discussed in 3.2 are not
supported. Therefore a new XML representation of this extended SES is developed. The
XML representation of the SES coding system configurations of the feedback control
system is shown in Listing D.1.
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Appendix

E Excerpt of a Possible Experiment Control Script
for the Feedback Control Example

The Experiment Control (EC) SESEcPy is introduced as template script in Section 4.4.1.
The concrete implementation of the SESEcPy for the feedback control example is shown
here based on the experiment specific steps for the experimentation specified in Section
4.4.4.

As described, SESEcPy is structured in a general and an experiment specific part. In the
experiment specific part the experiment run is coded by functions, such as the SES file and
initial or reactively derived SESvars. In the general part the control and calling order of
the components of the SES/MB-based architecture are coded by a function. Furthermore,
a loop is required in which the experiment steps are processed. This is implemented in a
main script of SESEcPy. An excerpt of the main script of SESEcPy is shown in Listing E.1.
At first the initial experiment specific SES structure needs to be loaded as shown in the
function initialSettings() in Listing E.2. In the loop the experiment-specific and general
functions are called alternately. In the experiment specific function nextState(results)
in Listing E.2 a current setting of SESvars or an termination of the experiment and
extensions of the config file are calculated. On the first run results is empty, but in
following simulation runs existing simulation results can be taken into account. In the
function generalExperimentation(SESfile, SESvar, addConfig) in Listing E.3 the software
tools with its respective methods pruning, flattening, and build are called. In case a
method fails, no result is returned to the main script and the experiment is terminated.

1 ...
2 SESfile = experimentSpecific . initialSettings ()
3 stop = 0
4 results = ""
5 # main loop until stop ==1
6 while stop == 0:
7 SESvar , stop , addConfig = experimentSpecific . nextState ( results )
8 if stop == 0:
9 results = general . generalExperimentation (SESfile , SESvar , addConfig )

10 ...

Listing E.1: Excerpt of the main script of SESEcPy.

1 function initialSettings ()
2 SESfile = ...
3 ...
4 return SESfile
5
6 function nextState ( results )
7 stop = 0
8 SESvar = [ feedforward =0, mysim =<simulator >, ...]
9 #on the first call , results are empty

10 if results != "":
11 # analyze results
12 # check if control goals are met
13 if goals are not met:
14 SESvar = ...
15 else :
16 stop = 1
17 addConfig = [starttime , finaltime , solver , ...]
18 return [SESvar , stop , addConfig ]

Listing E.2: Excerpt of the experiment specific functions of SESEcPy.
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1 function generalExperimentation (SESfile , SESvar , addConfig )
2 # SESToPy : prune
3 PESfile = SESToPy (" prune ", SESvar , SESfile )
4 if PESfile is derived :
5 # SESToPy : flatten
6 FPESfile = SESToPy (" flatten ", PESfile )
7 if FPESfile is derived :
8 # SESMoPy : build
9 smHandle = SESMoPy ( FPESfile )

10 if model created :
11 extend configuration file in smHandle with addConfig
12 # SESEuPy : simulate
13 results = SESEuPy ( smHandle )
14 return results
15 else :
16 # return "" and thus stop the experiment
17 return ""
18 else :
19 # return "" and thus stop the experiment
20 return ""
21 else :
22 # return "" and thus stop the experiment
23 return ""

Listing E.3: Excerpt of the general function of SESEcPy.
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F Overview of Model Generation with SESMoPy

In Section 4.4.5 model generation using the software SESMoPy is discussed. An activity
diagram of SESMoPy’s model generation process is presented in this section to provide the
overview. It is depicted in Figures F.1 and F.2. The latter figure shows model generation
using the Functional Mock-up Interface (FMI).
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Figure F.1: Steps for model generation with SESMoPy.
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Figure F.2: Steps for model generation with SESMoPy using FMI.
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G Excerpt of a Simulation Model Representation
and the Resulting Simulation Model Executable
for the Feedback Control Example

Listing G.1 shows a Simulink Simulation Model Representation (SMR) for native model
generation. It is an excerpt of the SMR specifying the feedback control system. The SMR
specifies the respective MATLAB commands for the model generation, execution, and
return values in an M-script. It is generated for MATLAB R2018a.

For model generation basic models are taken from the MB and configured according to
the information from the PES or FPES. A Simulink MB for native model generation is
shown in Figure 4.6. All basic models are wrapped in submodels for unification of ports
and names. For the configuration of basic models an additional function was introduced.
It is set as InitFcn in the SMR, which is executed on model generation. The InitFcn
configures blocks with configuration information. An example for this is the configuration
information sourceSys_k=0 for block sourceSys in line 25. A template of this additional
function was presented in Listing 4.1. After the blocks the couplings are set. In Section
4.4.6 the extension of the SMR by the Execution Unit (EU) SESEuPy is described. The
SMR is extended with output ports and their respective couplings for variables of interest.
Furthermore, the command for simulation execution with its configuration is specified.
Finally, simulation results are collected and stored.

On execution in MATLAB an executable Simulink Simulation Model Executable (SME)
is generated. Figure G.1 shows the respective SME.

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % generate Simulink model
3
4 load_system (’simulink ’);
5 h = new_system (’Simulink_Feedback_Model_SMR ’);
6 open_system (h);
7
8 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 % set the InitFcn

10
11 % text for the InitFcn of the model
12 initText = ’’;
13 % read additional function
14 initText =[ initText , fileread (’setParameters .m’), newline , newline ];
15 % write the contents in InitFcn of the model , it sets parameters of the model
16 set_param (h, ’InitFcn ’, initText );
17
18 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 % add blocks according to the PES or FPES
20
21 % block sourceSys
22 % add the Simulink block from the MB and rename it according to the SES
23 h = add_block (’MB/ Constant ’, ’Simulink_Feedback_Model_SMR / sourceSys ’);
24 % variables for the block -> applied to the block in the InitFcn
25 sourceSys_k = ’0’;
26
27 % block feedbackSys
28 % add the Simulink block from the MB and rename it according to the SES
29 h = add_block (’MB/ Feedback ’, ’Simulink_Feedback_Model_SMR / feedbackSys ’);
30
31 % add more needed blocks from the Simulink MB according to the PES or FPES
32 ...
33
34 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 % add couplings according to the PES or FPES
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36
37 % coupling between the blocks sourceSys and feedbackSys
38 % get the port handles of the source block
39 phFrom = get_param (’Simulink_Feedback_Model_SMR / sourceSys ’,’PortHandles ’);
40 % get the port handles of the sink block
41 phTo = get_param (’Simulink_Feedback_Model_SMR / feedbackSys ’,’PortHandles ’);
42 % find port number of the output port (pno )
43 pno = ...
44 % find port number of the input port ( pni)
45 pni = ...
46 % create coupling between the output port ( type : Outport )
47 % and input port ( type : Inport )
48 add_line (’Simulink_Feedback_Model_SMR ’, phFrom . Outport (pno), ...
49 phTo. Inport (pni), ’autorouting ’, ’on ’);
50
51 % add more needed couplings according to the PES or FPES
52 ...
53
54 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 % Simulink specific extensions added by the EU
56 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 % add output blocks for variables of interest
58
59 % add output blocks and their coupling for variables of interest
60 % Simulink_OutBlock is an MB implemented in the EU
61 h = add_block (’Simulink_OutBlock /Out ’, ’Simulink_Feedback_Model_SMR / sourceSys_y ’);
62 % set the number of the output block
63 set_param (h, ’Port ’, ’1’);
64 % get the port handles of the source block
65 phFrom = get_param (’Simulink_Feedback_Model_SMR / sourceSys ’,’PortHandles ’);
66 % get the port handles of the sink block
67 phTo = get_param (’Simulink_Feedback_Model_SMR / sourceSys_y ’,’PortHandles ’);
68 % find port number of the output port (pno )
69 pno = ...
70 % set the port number of the input port (see above )
71 pni = 1;
72 % create coupling between the output port ( type : Outport )
73 % and input port ( type : Inport )
74 add_line (’Simulink_Feedback_Model_SMR ’, phFrom . Outport (pno), ...
75 phTo. Inport (pni), ’autorouting ’, ’on ’);
76
77 % add more output blocks for variables of interest
78 ...
79
80 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
81 % add and parameterize simulation execution
82
83 % Simulator run
84 simout = sim(’Simulink_Feedback_Model_SMR ’, ’StartTime ’, ’0’, ...
85 ’Solver ’, ’ode45 ’, ’StopTime ’, ’50 ’, ’MaxStep ’, ’0.1 ’, ...
86 ’SaveFormat ’, ’StructureWithTime ’);
87
88 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89 % get the simulation results and write them in a CSV file
90 t = ...
91 y = ...
92 simdata = {...};
93 dlmwrite (’Simulink_Feedback_Model_SMR .csv ’,simdata ,’-append ’);

Listing G.1: Excerpt of a native SMR of the feedback control system for MATLAB/Simulink
extended by the EU.
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Figure G.1: Native Simulink model of the feedback control system built from the SMR in Listing
G.1.
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H Variants of the Watershed Example

The watershed example was introduced in Section 5.1. The concepts of abstraction
hierarchies and temporal granularity were introduced. However, only essential parts of
the SES were shown and no couplings were presented. Figure H.1 shows the full SES
describing the watershed system and in the next paragraphs it is discussed.

Next to the SESvar WSLevel introduced in Section 5.1 three additional SESvars are
needed. These are MntLevel, BasinLevel, and NumRepArea. The respective semantic
conditions are specified in Figure H.1.

The first layers of the SES were described in Section 5.1. The SES was explained up
to the abstraction hierarchy of the altitude of the watershed. Depending on the level of
detail the Altitude can be of the type SimpleAltitude or of the type Mountain1, according
to the two altitude abstraction hierarchy levels. Which specialization of the node Altitude
is selected during pruning is defined by specrules in AltitudeSPEC evaluating the SESvar
MntLevel.

Mountain1 describing the rainfall or snow depending on the height is composed of the
four siblings: Estimator, Basin, Areas, and UAM2. The composition structure is specified
with the aspect node Mountain1DEC. The leaf node Estimator refers to a basic model
calculating the rainfall in each point of the mesh. The node Areas is refined by a variable
number of nodes of type Area, each of which represents the rainfall on a specific considered
area and refers to a basic model in the MB. Hence, Areas is followed by a multi-aspect node
AreasMASP. In AreasMASP the variable number of children is specified with the SESvar
NumRepArea and the coupling relations are defined in the attribute cplg4. UAM2 is
another leaf node referring to a basic model necessary for defining an abstraction hierarchy
analogously to UAM. On this abstraction hierarchy level a time granularity is specified
by different expressions of the inner entity Basin. It takes into account the storage effect
of water or snow on the mountain. Thus, there is a specialization BasinSPEC in which
dependent of the SESvar BasinLevel a selection is taken during pruning.

The resolution of the storage effect of the Mountain can be on a daily or hourly basis.
If the time granularity shall be coarser, the leaf entity SimpleBasin is chosen. In case
the watershed shall be studied with a finer time resolution, the entity Basin1 is selected.
Basin1 is decomposed into the leaf entity node SnowBasin, which has the siblings DAM3
and UAM3 providing the same functionality as DAM and UAM.

Coupling relations between the entity nodes have the prefix cplg in Figure H.1 at aspect
and multi-aspect nodes. They are presented in Figure H.2. For simplicity the types of the
ports are left away, but the type of the coupling is specified as External Input Coupling
(EIC), Inner Coupling (IC), or External Output Coupling (EOC). While the attributes
cplg1, cplg2 and cplg5 are specifying static relations, cplg3 and cplg4 are affected by the
varying number of replicated Area entities, that is specified by the multi-aspect AreasMASP.
The current number of replications depends on the value of the SESvar NumRepArea.
This SESvar is used to specify the varying coupling relations. The attributes cplg3 and
cplg4 specify an SESfcn call and pass the SESvar NumRepArea as current input argument.
As a representative for coupling functions cplg3 specified by cplfcn1 is discussed here in
detail. In cplfcn1 the SESvar NumRepArea is passed to the input variable NUM. The other
two input variables are defined implicitly and encode the names of the parent node and
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the subnodes of the node calling this function. In the cplfcn fixed and variable couplings
depending on NUM are set.

A complete MB for the SES in Figure H.1 is presented in Figure H.3. However, no
reference to DEVSimPy is made in the figure. The basic models with the prefix Downward
Atomic Model (DAM) and Upward Atomic Model (UAM) are displayed with a bold frame.
As can be seen in the SES the basic model Est needs to have a configurable number of
output ports and the basic model UAMmnt1 needs a configurable number of input ports.
The number depends on the value in the SESvar NumRepArea.

Different PES specifying different levels of detail can be derived. For the highest level of
abstraction with least detail the SESvar WSLevel is set to 0. The SimpleLayer is selected
and the watershed is not detailed further. Since the PES only has one layer, the PES
equals the FPES. The resulting PES and its coupling relations are presented in Figure
H.4 (a). Figure H.4 (b) shows a model generated from this PES.

The PES for the lowest level of abstraction with the most details is depicted in Figure
H.5. The SESvars are set as depicted and the recalculated couplings are shown. During
pruning the SESfcns are evaluated and static couplings are set in the respective aspect
nodes. In the first abstraction WS1 is selected, in the second abstraction Mountain1, in
the third abstraction Basin1, and two Area nodes are generated. As discussed, deriving
an FPES before applying the build method simplifies the resulting model. The flattening
is thus advantageous for model generation. However, a model can also be generated from
a PES. As in the PES, coupled components are part of the model accordingly. A model
generated from the PES in Figure H.5 is depicted in Figure H.6. For a better overview
the names of the ports are left away. Coupled components have no influence on model
execution. Therefore the model generated from the PES is not minimal. A derived FPES
for the lowest level of abstraction and its couplings is depicted in Chapter 5.1 in Figure
5.4 and the generated model is shown in Figure 5.5.
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root

rootDEC
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Rain
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Temp
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|

{mb='MB/Rn'} {mb='MB/Tmp'} {mb='MB/TDk'}

Figure H.1: SES for specifying model variants of the watershed with model components of
different levels of detail.
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cplg1={(Rain, out, WS, in1),

            (Temp, out, WS, in2),

            (WS, out, ToDisk, in)}

cplg2={(WS1, in1, DAM, in1),             # EIC

             (WS1, in2, DAM, in2),             # EIC

             (DAM, out1, Altitude, in1),      # IC

             (DAM, out2, Altitude, in2),      # IC

             (DAM, out3, Altitude, in3),      # IC

             (DAM, out4, Altitude, in4),      # IC

             (Altitude, out, EWS, in1),        # IC

             (EWS, out1, UAM, in1),           # IC

             (EWS, out2, UAM, in2),           # IC

             (EWS, out3, UAM, in3),           # IC

             (UAM, out, WS1, out)              # EOC }

Figure H.2: Coupling relations of the SES in Figure H.1.
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Figure H.3: MB for the SES in Figure H.1.
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Figure H.4: PES and model for the highest abstraction level.
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root
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Figure H.5: PES for the lowest abstraction level.
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Figure H.6: Model derived from the PES for the lowest abstraction level.
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I Software Generation with the SES/MB
Framework

The description of non-simulation-specific component-based systems with SES/MB was
introduced in Section 4.4.7 with focus on the generation of software applications. This
is illustrated by the generation of a website. The website shows different variants of a
Hypertext Markup Language (HTML) / JavaScript clock. The example is inspired by a
Weather Station, which is discussed in the documentation of the software pure::variants.
This software is mentioned in connection with feature modeling in Section 2.5.2.

Modeling of System Configurations The variants of the software structure are coded
in the SES according to Figure I.1. The root node clock is composed of several components
as specified by the node clockDEC. The clockwork in node time.js is mandatory. At this
node the attribute timezone is specified by the SESvar TZ. The date specified by node
date.js is optional. The selection depends on the specrule in node dateSPEC, which carries
the selection out on basis of the value of the SESvar Date. The clock needs to have a
display specified by node index.html, which represents the main function and entry point
of the website. In addition a favicon is referenced in node favicon.png. A dark or a light
style for the display can be set depending on the selection of the nodes styled.js or stylel.js
in the specrule of node styleSPEC. The selection is based on the value of the SESvar Style.

clock

clockDEC

| |
date

|
|

|

{mb='fcns.js/timefcn'

 timezone=TZ          }

SESVAR={Date, Style, TZ, Ds}

SemanticCondition={Date in [0, 1] � Style in ['d', 'l']

                                  � TZ in ['CET', ... ] � Ds in [0, 1]  }

SES

displayComponents

dateSPEC

|

|

NONE
||

|

|

Figure I.1: An SES specifying software variants of a HTML / JavaScript clock.

The couplings cplg1 and cplg2 in nodes clockDEC and displayComponentsDEC need
to be specified based on SESfcns. The coupling functions for the SES are not given
here, because the way they are defined does not differ from the feedback control system
example. In cplg2 an excerpt of the function call is shown to illustrate the dependence of
the coupling on the SESvar Ds, which selects the style of the date. However, the coupling
relations are depicted as list for the FPES to discuss port types.
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In an SES specifying a software application leaf nodes have the name of functions in the
target language. These components are specified with functions from the MB according to
the mb-attributes. For example the component time.js represents the JavaScript function
timefcn, which is defined in fcns.js in the MB. Unlike model generation, the content
of components is modified by inserting sourcecode. Other attributes specify values for
variables in the respective functions. In the JavaScript function timefcn in the component
time.js the variable timezone gets the value of the SESvar TZ.

Organizing an MB The MB organizes three files: the index.html, the favicon.png, and
fcns.js. While the index.html organizes the main entry point and the favicon.png is a
design element, the fcns.js organizes all JavaScript functions needed for the website.

Derivation of a Possible PES and Generation of the Appropriate Software Application
Figure I.2 and Figure I.3 show a possible PES and the corresponding FPES. Couplings
specifiy the structure of the software and ports represent input and output parameters
of functions. Further information can be specified as port type. The couplings in cplg of
the FPES are listed in Table I.1. The darkstylefcn in styled.js_style is only called once
represented by the port type for a single call sc. The timefcn in time.js and datefcn in
date.js_date functions are called regularely in an interval of 500 ms. This is represented
by the port type ivl500. The function datefcn is called with the input parameter ds=0 in
the index.html as specified in the SESvar Ds.

clock

clockDEC

| |
date.js_date

|
|

|

{mb='fcns.js/timefcn'

 timezone='CET'     }

Pruned with: Date=1, Style='d', TZ='CET', Ds=0PES

displayComponentstime.js

displayComponentsDEC

styled.js_style
||

index.html

|

|

|
favicon.png

{mb='fcns.js/datefcn'}

{mb='index.html'} {mb='favicon.png'}{mb='fcns.js/darkstylefcn'}

{cplg1}

{cplg2}

Figure I.2: A possible PES of a HTML / JavaScript clock.

clock

clockDEC

| |
date.js_date

|

|

{mb='fcns.js/timefcn'

 timezone='CET'     }

Pruned with: Date=1, Style='d', TZ='CET', Ds=0FPES

time.js styled.js_style
||

index.html
|

favicon.png
{mb='fcns.js/datefcn'} {mb='index.html'} {mb='favicon.png'}{mb='fcns.js/darkstylefcn'}

{cplg}

Figure I.3: A possible FPES of a HTML / JavaScript clock.
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Table I.1: The couplings of the FPES in Figure I.3.

Source Sink
EntityName Port Type EntityName Port Type

cplg
styled.js_style s sc index.html s sc
time.js t ivl500 index.html t ivl500
date.js_date d ivl500 index.html d ivl500
index.html ds=0 ivl500 date.js_date ds ivl500

Due to the evaluation of the specialization nodes, the names of the nodes date.js and
styled.js are extended. In the specific model builder for a target language, these extended
names are shortened so that a component gets the name of a function in the target
language. The names of the nodes date.js_date and styled.js_style are cropped to date.js
and styled.js. The coupling relationships are adjusted analogously. The resulting software
structure is shown in Figure I.4.

clock

Figure I.4: Structure of the HTML / JavaScript clock according to the FPES in Figure I.3 and
the introduced MB.

As shown in Figure I.4 the software is composed of several files. Their source code is
shown next, but the picture favicon.png is not displayed. The entry point index.html is
presented in Listing I.1 and the JavaScript functions in styled.js, time.js, and date.js are
shown in Listings I.2, I.3, and I.4. This executable software application is generated by a
native, target language specific model builder.

In lines 24–25 in the index.hml the darkstylefcn is called once and its return value is
assigned to the variable s. The style is set in an Cascading Style Sheets (CSS) code wrapped
as string in a JavaScript function. The function has the return value s as presented in
Listing I.2. In lines 29–32 in the index.hml the timefcn is called in an interval of 500 ms
and its return value is assigned to the variable t. The function has the return value t as
presented in Listing I.3. The parameter timezone is set to “CET“ in the model builder
according to an attribute in the FPES. In lines 36–39 in the index.hml the datefcn is called
in an interval of 500 ms and its return value is assigned to the variable d. It is called with
the parameter value ds=0. The function has the input parameter ds and the return value
d as presented in Listing I.4. Depending on the value of ds the style of the date can be
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switched. A screenshot of the resulting website is presented in Figure I.5.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <!-- set page head -->
5 <meta charset= "UTF-8">
6 <title >Clock </title >
7 <link rel="icon" type= "image/png" href= " favicon.png " sizes= "32

x32">
8 </head >
9

10 <b ody>
11

12 <!-- heading -->
13 <p style= " font-size:30px;color:red "><b>Clock </b></p>
14 <p style= " font-size:20px;color:red "> Software Generation

Example </p>
15

16 <!-- set the outputs -->
17 <output id="time"> </output ><br>
18 <output id="date"> </output >
19

20 <!-- scripts depending on variant , code inserted by model
builder -->

21

22 <script language= " javascript " type= "text/ javascript " src="
styled.js "> </script >

23 <script >
24 var s = darkstylefcn ();
25 document.head.appendChild (s);
26 </script >
27 <script language= " javascript " type= "text/ javascript " src="

time.js "> </script >
28 <script >
29 setInterval ( function () {
30 var t = timefcn ();
31 document.getElementById ("time"). innerHTML = t;
32 }, 500);
33 </script >
34 <script language= " javascript " type= "text/ javascript " src="

date.js "> </script >
35 <script >
36 setInterval ( function () {
37 var d = datefcn (ds=0);
38 document.getElementById ("date"). innerHTML = d;
39 }, 500);
40 </script >
41

42 </b ody>
43 </html >

Listing I.1: The index.html HTML file as entry point for the website.
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1 // output parameter is ’s’
2 function darkstylefcn () {
3 var s = document . createElement (’style ’);
4 // CSS style as string
5 s. innerHTML = ’body { background - color : #000000;} output { color : # FFFFFF ;} ’;
6 // -------------------
7 return s;
8 }

Listing I.2: The JavaScript darkstylefcn in the styled.js file.

1 // output parameter is ’t ’, variable ’timezone ’ set
2 // by an attribute in the FPES
3 function timefcn () {
4 function setZero (i) {
5 if (i < 10) {
6 i = "0" + i;
7 }
8 return i;
9 }

10 var today = new Date ();
11 var hour = today . getHours ();
12 var minute = today . getMinutes ();
13 var second = today . getSeconds ();
14 hour = setZero (hour);
15 minute = setZero ( minute );
16 second = setZero ( second );
17 // ---------------
18 timezone = "CET";
19 // ---------------
20 var t = timezone +" - "+hour+":"+ minute +":"+ second ;
21 return t;
22 }

Listing I.3: The JavaScript timefcn in the time.js file.

1 // input parameter is ’ds ’, output parameter is ’d’
2 function datefcn (ds) {
3 function setZero (i) {
4 if (i < 10) {
5 i = "0" + i;
6 }
7 return i;
8 }
9 var today = new Date ();

10 var months = [’January ’, ’February ’, ’March ’, ’April ’, ’May ’, ’June ’, ’July ’, ’
August ’, ’September ’, ’October ’, ’November ’, ’December ’];

11 var days = [’Sunday ’, ’Monday ’, ’Tuesday ’, ’Wednesday ’, ’Thursday ’, ’Friday ’, ’
Saturday ’];

12 var weekday = days[ today . getDay () ];
13 var year = today . getFullYear ();
14 var month = months [ today . getMonth () ];
15 var day = today . getDate ();
16 day = setZero (day);
17 if (ds === 0) {
18 var d = weekday +", "+year+"-"+ month +"-"+day;
19 } else {
20 var d = weekday +", "+day+". of "+ month +" in "+year;
21 }
22 return d;
23 }

Listing I.4: The JavaScript datefcn in the date.js file.

150



Appendix

Figure I.5: A screenshot of the resulting website.
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