
149

S N E T E C H N I C A L N O T E

Modeling and Simulation of a Real-world
Application using NSA-DEVS

David Jammer1,2, Peter Junglas2*, Thorsten Pawletta1, Sven Pawletta1

SNE 33(4), 2023, 149-156, DOI: 10.11128/sne.33.tn.10662

Received: 2023-11-03; Revised: 2023-11-25

Accepted: 2023-11-26

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The recently proposed NSA-DEVS formalism
uses infinitesimal time delays to combine the easy imple-
mentation of Mealy components from RPDEVS with the
simple simulator structure of PDEVS in order to make
DEVS a suitable foundation for complex component-
based modeling tasks. To prove its general applicabil-
ity, it is used here to implement a large real-world model
describing a production line that consists of several fur-
naces, lathes and grinders. Using a Matlab implemen-
tation of the simulator algorithm, the model behaviour
is analyzed carefully and it is found that only one of its
over 400 infinitesimal time delay parameters has to be
changed from its default value. This shows the sound-
ness of the basic ideas of NSA-DEVS and its applicability
for real-world examples.

Introduction

A well-known difficulty that often arises when using the

discrete event approach is the occurence of events at the

same time instant. There are two very different reasons

for such a behaviour: The first one is the accidental co-
incidence of events, e. g. when two input events from

different sources arrive at the same time, or when an

event arrives at a component at the exact moment of a

state change. In such cases the exact ordering of these

events inside a concrete simulator is often of no con-

sequence, therefore providing an opportunity for par-

allel execution. The other reason is a chain of events

that is created by an initial event, causing an immediate

(transitory) state change that leads to further events that

spread through the system without delay. Even if all

these events formally appear at the same time instant,

their logical relation enforces a fixed ordering of such a

causal cascade.

In the context of the widely used DEVS formalism

[1] the behaviour of a model and its simulator are de-

fined precisely. Different variants of the formalism pro-

vide specific m echanisms t o fi x th e or der of concur-

rent events, where necessary: Classic DEVS uses a Se-
lect function on the level of coupled components, while

PDEVS introduces a confluent s tate t ransition func-

tion inside an atomic component. The revised PDEVS

formalism (RPDEVS) [2] incorporates a direct Mealy

structure with a generic state transition function and a

refined simulator algorithm [3].

In order to simplify the modeling of causal cas-

cades and the modeling of Mealy behavior, a new

approach named NSA-DEVS (Non-Standard Analysis
DEVS) was proposed in [4]. It is based on the phys-

ical intuition that the transport and the processing of

events always need a certain amount of time, so that

the simulation problems are actually due to oversimpli-

fication. But instead of introducing a plethora of small

delay parameters, NSA-DEVS uses infinitesimal time

delays. Therefore it defines t ime v alues a s elements

of the hyperreals ∗
R, which is a mathematically well-

defined field extension of R containing an infinitesimal
ε > 0 [5]

The definition o f a s imulator [6] a nd t he careful

analysis of a set of standard examples [7] have shown

the basic soundness of the new formalism. But to prove

its general applicability, one has to test it with a large

non-trivial example. For this purpose a model of a pro-

duction line will be studied in the following that con-

sists of several furnaces, lathes and grinders. The model

includes the material flow, s everal p rocess controllers

and basic physical properties.

SNE 33(4) – 12/2023

1Research Group Computational Engineering and Automation, University of Applied Sciences Wismar,

2PHWT-Institut, PHWT Vechta/Diepholz, Am Campus 2, 49356 Diepholz, Germany;

150

Modeling and Simulation of a Real-world Application using NSA-DEVS

After a short recapitulation of the NSA-DEVS for-

malism, the model and its implementation in Matlab

will be described, highlighting some special atomic and

coupled components. Finally, the simulation of the

model and careful analysis of the results will clarify the

main question: How many of the delay parameters have

to be changed from their default values, and how diffi-

cult is it to find them? Or, in other words: Is the NSA-

DEVS formalism suitable for real-world applications?

1 The NSA-DEVS Formalism

For the conveniance of the reader the basic definitions

of the NSA-DEVS model specification will be given

here. A more detailed description, the connection with

the PDEVS and RPDEVS formalisms and the definition

of the abstract simulator can be found in [6].

Two types of models are defined in all DEVS vari-

ants: an atomic model that describes the behaviour of

a single component, and a coupled model, which spec-

ifies how models are combined to build a hierarchical

structure. In NSA-DEVS an atomic model is given by

a 7-tuple < X ,S,Y,τ , ta,δ ,λ > with

X set of input ports and values,
S set of states,
Y set of output ports and values,

τ ∈ ∗
R
>0
fin input delay time,

ta : S → ∗
R
>0
fin ∪{ω} time advance function,

δ : Q×X+ → S state transition function,
λ : Q×X+ → Y+ output function.

The input and output sets X , Y contain pairs of ports

and values, where ports are given by names. The sets

X+, Y+ consist of sets of values from X , Y to de-

scribe the simultaneous appearance of input or output

values at different ports. The definition of the transi-

tion function δ and the output function λ contain the

set Q = {(s,e)|s ∈ S, 0 < e ≤ ta(s)} that combines a

state and the elapsed time e since the last transition.

As in RPDEVS, both event types (incoming event or

internal event) lead to a call of λ followed by a change

to a new state according to δ . The time advance func-

tion ta may be infinitesimal or infinite (using ω := 1/ε ,

with ε as infinitesimal value), but it is always > 0,

thereby excluding proper transitory states. The delay

time τ between the arrival of a set of inputs and the call

of λ and δ is generally an infinitesimal, often given by

a default value τde f = ε .

A coupled NSA-DEVS model is defined as in

PDEVS and RPDEVS. It consists of input and output

ports and a set of atomic or coupled models, which are

connected among themselves and to the external ports.

Outputs are transported as usual and a coupled compo-

nent has no additional input delays.

2 A Real-world DEVS Application

The model and its components described in this arti-

cle were developed similar to [8, 9]. The model de-

scribes a production line which includes lathes, grinders

and furnaces (cf. Figure 1). In this production line, in

the first step, the raw parts supplied by a generator are

processed by lathes. After lathing, the components are

thermally treated. This is done first by a furnace for

volume hardening (furnace 1) and then by a furnace for

stress relief annealing (furnace 2). The two furnaces

have no difference in design, but only in their temper-

ature behaviour. The furnaces always process several

parts at the same time, depending on the type of fur-

nace. After heat processing, the components are fin-

ished by grinders. The manufacturing operations are

decoupled via buffers with a maximum capacity of 400

parts. The buffers of the lathes and grinders are located

in the coupled model of the respective manufacturing

operation (cf. Figure 2). The buffers are organized in

a coupled model whereby every single machine has its

own buffer (cf. Figure 3). This model corresponds to

example 4 from [7].

The lathe, grinder and furnace machine models have

all the same internal structure according to [10]. The

structure is divided into a physical model (PM), control

model (CM) and material flow model (MF) (cf. Fig-

ure 4). The PM describes the physical relationships, e.

g. the heat flows, by differential equations. The CM

contains the local machine control, which takes into

account various internal processing steps. In MF, the

internal material flow is modeled in a process-oriented

way, describing the parts as moving entities.

The machine models return the process variables

electrical power, electrical energy and utilization over

time. The buffers deliver information about the current

load and a terminator reports the number of finished

parts. These process variables are used to calculate the

Key Performance Indicator (KPI) variables buffer stock

(pcStock), throughput (thrput), load peak (loadPeak),

utilization (pcUtil), energy per part (eSpec) and produc-

tion time per part (procTime).

SNE 33(4) – 12/2023

151

Modeling and Simulation of a Real-world Application using NSA-DEVS

Top level structure of the production line.

Substructure of the grinding component in Fig. 1.

The entire model consists of 391 atomic models and

88 coupled models and is organized in 5 hierarchical

levels.

3 Atomic Components

Using the Matlab-based NSA-DEVS simulator from

[11], an atomic model is implemented as a class, which

defines the transition and the output function as meth-

ods delta(obj,e,x) and lambda(obj,e,x)
and the time advance function as method ta(obj).

The argument obj is the handle (reference) to the ob-

ject, allowing access to its state, e is the time since

the last transition, given as a two-dimensional vector

[a, b] denoting a hyperreal value a+ bε , and x is

a structure, containing the current input as field/value

pairs, where the field is identical to the port n ame. The

constructor always defines the name of the component,

the input delay τ and a debug flag, as well as optional

model parameters.

Substructure of the input queue in Fig. 2.

Since NSA-DEVS retains the mealy-type behaviour

of RPDEVS, standard computational components can

be implemented easily. The main difference to compo-

nents used in a continuous modeling environment is due

to the event-based paradigm applied here: At least for

components with more than one input port, one needs

a state variable for every input port to store incoming

values, because an input is only defined a t t he t ime of

the corresponding input event. Taking this into account,

one can implement a simple adding component by pro-

viding a δ function that just stores the input values, a ta
function that always returns [inf, 0], and a λ func-

tion that returns the sum of the input values, using the

stored values, where necessary.

A standard library of atomic components has been

built for the models described in [7] and the production

line, containing mathematical and routing components,

simple source and sink components and several lo

gis

SNE 33(4) – 12/2023

152

Modeling and Simulation of a Real-world Application using NSA-DEVS

Substructure of the furnace components in Fig. 1.

Several of them have been described in [7], among

them an atomic model ToWorkspace that can be

connected to an output port and copies the incoming

values to a global output variable, which can be

analysed after the simulation run. For the modeling of

the furnace a batch component has been added that

combines a given num-ber of incoming entities into

one batch entity, together with a corresponding

unbatch atomic model.

Since some physical variables of the production

line are modelled by differential equations, e. g. the

temper-ature inside a furnace or the electric current in a

grind-ing machine, an integrator component is

needed in-side the NSA-DEVS environment. For this

purpose the Quantized-State-Systems (QSS) method

is used [12], which has already been implemented

inside a Matlab-based DEVS simulator [13].

In addition, a few atomics have been added that are

specific to the production l ine: a special server compo-

nent, controller components for all machine types and

a few conveniance components, which could have been

built as coupled models from atomics in the

standard library. Altogether the production line

model uses 15 types of atomics from the standard

library and 7 from its own library.

4 Coupled Components
In the NSA-DEVS simulator used here, a coupled

model is not implemented as a class, but simply

given by a constructor function, which defines a ll

elements

of the coupled-model specification: its internal atomic

and coupled models and their connections among them-

selves and to the external ports. Furthermore, it assigns

its atomic models to simulator modules and its coupled

models – including the currently defined one – to coor-

dinator modules (cf. [6]).

Especially for large coupled models, the program-

ming of such a constructor function is tedious and error

prone. Therefore a graphical model generator is pro-

vided – similar to the approach in [14] – that creates the

function from a graphical description. For this purpose,

atomic models are represented in Simulink libraries as

blocks that only contain the external ports, using masks

to define their parameters (cf. Figure 5). Coupled mod-

els can then be defined a s s tandard S imulink subsys-

tems consisting entirely of such blocks, subsystems and

external ports. The model generator creates all needed

constructor functions, where the top-level model can be

directly run in the simulator. The corresponding model

of the production line is shown in Figure 1. It consists

of three atomics – a generator, a constant and a

terminator – and coupled systems for the furnaces,

lathes, grinders and intermediate queues.

At the inner hierarchy levels many models look very

much like similar models in continuous simulation en-

vironments like Simulink. A good example is the com-

ponent that computes the furnace temperature using the

simple differential equation

CO
dT
dt

= kA(T −Te)+Pheating −Punload .

It is built exactly like a corresponding Simulink model

(cf. Figure 6).

SNE 33(4) – 12/2023

Library of logistics related component

153

Modeling and Simulation of a Real-world Application using NSA-DEVS

Model for the computation of the furnace
temperature.

Though this correspondence may sometimes be

helpful for the definition of suitable atomics and the

construction of coupled models, it is basically super-

ficial. The main difference is, of course, the meaning

of the connecting lines: In continuous simulation en-

vironments a line transports a signal that has always a

value, while in a DEVS environment a value is only

defined at the moment of an input event. This has prac-

tical consequences for the concrete modeling, e. g. for

the question, whether it is possible to connect an output

port directly to several input ports (1:N connection) or

vice versa (N:1 connection).

Using a signal paradigm as in Simulink, the 1:N

direction clearly is possible, distributing the value to

all input ports, while the reverse direction is incorrect,

since in this case the input value is not well defined.

In PDEVS both directions are allowed: Several events

can arrive at the same input port, even simultaneously,

while an output event is copied automatically by the co-

ordinator, when it is distributed to several components.

In NSA-DEVS the situation is different again: While

N:1 connections are possible in principle, the abstract

simulator does not support the simultaneous arrival of

input events at the same port. If this is required – e.

g. for modeling of multi-value logic components [15]

– one has to use corresponding connection atomics ex-

plicitely. The 1:N direction is handled by the coordina-

tor as in PDEVS and will often be used, e. g. to attach

ToWorkspace components directly to a line or to dis-

tribute events transporting simple values. If the data of

an event is interpreted as an entity, as in transactional-

based modeling, it would be better though to include

explicit copy components to make the intention clear.

5 Testing and Running the
Model

We will now try to run the complete production line

model and interpret the simulation results. The main

point of interest here is, how to set all the infinitesimal

parameters. They consist primarily of the 391 input de-

lay times τ . Furthermore one needs 12 additional delay

parameters for the transitory states that are used in the

queue, unbatch and combine atomics, which will be de-

noted as τD. All these values are usually predefined and

set to the value τde f = ε . From the analysis of a few ex-

ample models in [7] the following situations have been

identified, where one has to change some of the param-

eters from their default value:

a.) Input events that appear during the input delay time

of a component, overwrite a previous input value

at the same port, which sometimes is useful, but

more often not. A particular example is a combine

component that serializes concurrent incoming in-

puts: These should be output with a sufficiently

large delay time, so that subsequent components

can process them one after the other.

b.) To make a queue-server combination work, the

blocking signal from the server has to arrive before

a second entity is output by the queue. In standard

situations it is sufficient to set the delay time of the

“transitory” queue state to 2ε , therefore this value

is defined as default in the library queue block.

c.) In loops containing several sequences of compo-

nents the order of concurrent events depends on

the total delay times along different paths. If one

wants to implement a specific ordering, one can

slow down some paths by increasing appropriate

delays.

Since problems due to wrong delay values often lead

to missing entities, a simple test strategy is to insert a

fixed amount of input entities and run the model, un-

til all entities should have reached the output. We start

with default parameters, i. e. all τ and τD values are

set to ε , except the τD values of queue atomics, which

are set to 2ε . The simulation run shows that no enti-

ties reach the final terminator and that the total amount

pcStock of entities in internal queues goes down to

zero, i. e. all entities are lost.

Taking into account the lesson from a.) the culprits

are quickly identified as the unbatch and combine atom-

ics: They release entities in groups with only the default

SNE 33(4) – 12/2023

154

Modeling and Simulation of a Real-world Application using NSA-DEVS

delay in between, so that these entities overwrite each

other during the input delay of the following compo-

nent. An obvious solution seems to be to enlarge the

τD values of both unbatch and both combine atomics to

2ε . Running the modified model, the simulator hangs

and must be terminated manually. This can happen,

when the overwriting of inputs happens in a loop with-

out reaching a result.

To localize the problem, one has to look more

closely at the sequence of events using the debugging

possibilities of the simulator. Debugging a complex

discrete-event based application is always a difficult en-

deavour. Therefore one usually starts by reducing the

complexity and looking at test benches for basic sub-

systems. Though this approach has been followed here

to find the usual bugs, it is not sufficient to fix all τ val-

ues, because some important loops only show up in the

complete model.

When setting a debug flag, the simulator outputs the

current simulation time. This shows that the simulation

is stuck in a loop at the first time, when a complete batch

of entities leaves the second furnace (Figure 4) and en-

ters the grinding section (Figure 2). The critical re-

gion therefore seems to be the unbatch atomic inside

furnace 2 and the input_queue component (Fig-

ure 3) inside grinding. Figure 8 shows this model

part with a view of the internal structure of the cou-

pled subsystems. Guessing from previous experience,

one would suspect that the τD parameter of unbatch
is too small. With a value of 10ε for the unbatch com-

ponents in both furnace subsystems, the model works,

no entities are lost, the output is as expected (Figure 7).

Since the problem encountered is typical for the

behaviour of NSA-DEVS, we will show in detail, how

one can use the debugging features of the simulator

to find the concrete source of the error (cf. Figure 8).

First, one adds toWorkspace components inside

input_queue that show the number of entities

in the three queues and the ids of outgoing entities.

Unfortunately, their results are not directly available,

when the simulation run is interrupted manually. Here,

another debugging feature is useful: All atomics have

debug flags, which can be switched on individually to

create outputs of their input and output values and all

state changes during the simulation run. This feature

is used here for the six toWorkspace components

and the distribute3 component at the input of the

input_queue coupling.

0 20 40 60 80 100
t [h]

0

50

100

150

200

250

300
pcStock [parts]

0 20 40 60 80 100
t [h]

0

100

200

300

400

500

600
thrput [parts]

0 20 40 60 80 100
t [h]

0

10

20

30

40

50

60
loadPeak [kW]

0 20 40 60 80 100
t [h]

0

0.1

0.2

0.3

0.4

0.5

0.6
pcUtil

0 20 40 60 80 100
t [h]

0

50

100

150

200

250

300
eSpec [kWh/part]

0 20 40 60 80 100
t [h]

0

5

10

15
procTime [h/part]

Simulation results showing KPI variables of the
production line model.

Analyzing the debugging outputs of the working

version, which uses τD = 10ε for the unbatch compo-

nent, shows the following behaviour: The first three

entities are distributed to the three queues, leave their

queue immediately and enter the server inside the

corresponding grinding machine. This leads to sev-

eral changes of the port input of distribute3,

which points to the currently shortest queue/server line.

The input events at port are delayed, because the

event cascade has to pass the queue, server, add and

smallestIn atomics. Some of them are overwrit-

ten by the following ones, as can easily be seen in the

debugging log: In such a case the lambda function of

a component is called several times without an inter-

vening call to the delta function. But this only effects

intermediate values here and doesn’t lead to erroneous

behaviour. The next entities (no. 4, 5, . . .) are stored in

the queues, the associated new port values arrive and

the distribute3 component is ready each time, be-

fore the next entity enters the input_queue, due to

the long τD-delay inside unbatch.

SNE 33(4) – 12/2023

155

Modeling and Simulation of a Real-world Application using NSA-DEVS

Critical part of the production line model.

The previously considered version with the smaller

value of τD = 2ε in unbatch shows a completely dif-

ferent sequence of actions: The first two entities are dis-

tributed to queue 1, the third to queue 2, since these en-

tities arrive before the port input could adapt to the

changes.

After the first entities the queues are b locked. This

reduces the delay chain of the port signal, because

the servers inside the grinding machines are no longer

involved, with drastic consequences: The new entities

now arrive at the same time as new port values from

the previous entity. Therefore the old values are over-

written and new lambda calls scheduled, without any

intervening delta calls.

This leads to a loss of all entities, until the last of the

batch arrives. But still the new port numbers come in,

therefore the loop doesn’t end even now.

This behaviour makes clear that τD of unbatch and

similar components must always be large enough so that

the following components and loops are ready, before

the next entity arrives. Taking a larger value does no

harm, but by adding up delays or just trial and error one

finds, t hat u sing 6 ε w orks h ere, b ut 5 ε d oesn’t. Ad-

ditionally, only the unbatch component of the second

furnace has to be adapted, while a default value of 2ε
for the first unbatch works perfectly.

6 Conclusions
The central point of this investigation is the question,

whether one can use NSA-DEVS without tinkering with

a huge number of additional parameter adjustments of

τ for the input delays and τD for the delays of transi-

tory states. The previous discussion has shown that a

consistent introduction of default values is crucial here:

While setting τ = ε and τD = ε seems to work in many

cases, components that emit trains of output values with

infinitesimal t ime d istances, such as q ueue, batch and

combine atomics, need special consideration. Often a

value of τD = 2ε is working and should be predefined

in corresponding library components.

In special situations one has to enlarge these delays,

but concrete values depend on the model details. Us-

ing a larger delay as general default could reduce the

number of cases, where the user has to adapt it, but this

apparent simplification is delusive.

The complex application studied here contains a to-

tal of 403 delay parameters, of which only one param-

eter had to be changed from its default value. This

clearly supports the expectation that modeling with

NSA-DEVS is feasible without drowning in a multitude

of delay parameter adjustments.

In a current PhD project, the production chain de-

scribed in this article is used as an application example,

where it is integrated into the structure of an Experi-

mental Frame [1]. The goal of the experiment is to op-

timize the structure and parameters of the model. As

a first step, a parameter study has been carried out us-

ing the Design of Experiment method. This extended

model works without further adaptations.

Considerations about the correct ordering of simul-

taneous events are not specific to NSA-DEVS, but are

inherent to discrete-event modeling in general. Accord-

ingly, other DEVS variants have different ways, how

to cope with these situations. We see the advantage of

NSA-DEVS in the clear-cut and versatile description of

the ordering using infinitesimal t ime v alues. To make

this work in practical applications, one needs support

by the simulation tools.

The Matlab-based NSA-DEVS simulator used here

supplies several debugging tools ranging from simple

time stamps over debug output of individual atomic

components up to complete output of internal simula-

tor messages.

SNE 33(4) – 12/2023

156

Modeling and Simulation of a Real-world Application using NSA-DEVS

The analysis has shown opportunities to improve the

implementation of some components. A prominent ex-

ample is the smallestIn atomic that could be modified to

output new values only, if the previous value changes.

This reduces the number of output events preventing the

infinite loop that has been encountered before. A more

drastic change would be to include only one queue be-

fore the grinding machines and to distribute the parts

after the queue. This would simplify the event structure

and might be a reasonable idea for a production line de-

sign. But the whole point is to provide a tool that works

for all modeling ideas, not to restrict the modeling to

the tool capacities.

An open question from [6, 7] was, whether one

needs port specific input delay times. The answer af-

ter this study is a definitive “no”: In all examples the

default value of the input delay was sufficient for all in-

put ports to get a reasonable model. A change of an

input delay would be needed only to guarantee a cer-

tain order of unrelated input events. Besides, one could

always resort to the workaround of inserting a simple

delay component – e. g. a gain with factor 1 – before a

specific input port.

This concludes the series of papers [4, 6, 7] that in-

vestigated the ideas behind NSA-DEVS as a founda-

tion for component-based DEVS modeling. Building

on RPDEVS [2], which made Mealy components sim-

ple and reliable, the NSA-DEVS approach was invented

to add the robust modeling of causal event cascades.

The definition of a simple abstract simulator, the careful

analysis of standard examples and the implementation

of a complex application have shown the soundness of

its underlying ideas. The Matlab simulator and model

base will be continually extended and provided freely

from [11] to make NSA-DEVS-based modeling avail-

able for real-world applications.

References
[1] Zeigler BP, Muzy A, Kofman E. Theory of Modeling

and Simulation. San Diego: Academic Press, 3rd ed.

2019.

[2] Preyser FJ, Heinzl B, Kastner W. RPDEVS: Revising

the Parallel Discrete Event System Specification. In:

9th Vienna Int. Conf. Mathematical Modelling. Wien.

2018; pp. 242–247.

[3] Preyser FJ, Heinzl B, Kastner W. RPDEVS Abstract

Simulator. SNE Simulation Notes Europe. 2019;

29(2):79–84. doi: 10.11128/sne.29.tn.10473.

[4] Junglas P. NSA-DEVS: Combining Mealy Behaviour

and Causality. SNE Simulation Notes Europe. 2021;

31(2):73–80. doi: 10.11128/sne.31.tn.10564.

[5] Goldblatt R. Lectures on the Hyperreals. New York:

Springer. 1998.

[6] Jammer D, Junglas P, Pawletta T, Pawletta S. A

Simulator for NSA-DEVS in Matlab. SNE Simulation
Notes Europe. 2023;33(4):141–148. doi:

10.11128/sne.33.sw.10661.

[7] Jammer D, Junglas P, Pawletta T, Pawletta S.

Implementing Standard Examples with NSA-DEVS.

SNE Simulation Notes Europe. 2022;32(4):195–202.

doi: 10.11128/sne.32.tn.10623.

[8] Larek R. Ressourceneffiziente Auslegung von

fertigungstechnischen Prozessketten durch Simulation

und numerische Optimierung (Resource-efficient

Design of Manufacturing Process Chains by Simulation

and Numerical Optimization). Ph.D. thesis, Universität

Bremen. 2012.

[9] Schmidt A. Variantenmanagement in der Modellbildung

und Simulation unter Verwendung des SES/MB

Frameworks (Variant Management in Modeling and

Simulation using the SES/MB Framework). Ph.D.

thesis, Hochschule Wismar / Universität Rostock. 2019.

[10] Pawletta T, Schmidt A, Junglas P. A Multimodeling

Approach for the Simulation of Energy Consumption in

Manufacturing. SNE Simulation Notes Europe. 2017;

27(2):115–124. DOI: 10.11128/sne.27.tn.10377.

[11] CEA Wismar. NSA-DEVS on GitHub.

https://github.com/cea-wismar/
NSA-DEVSforMATLAB.

[12] Cellier FE, Kofman E. Continuous System Simulation.

New York: Springer. 2006.

[13] Schwatinski T, Pawletta T. A Quantization-based ODE

Approximation and HPP-LGCA Approach to

ARGESIM Benchmark C17 ‘SIR-type Epidemic’ in a

DEVS Environment based on MATLAB. SNE
Simulation Notes Europe. 2011;21(1):57–60. doi:

10.11128/sne.21.bn17.10053.

[14] Bergero F, Kofman E. PowerDEVS. A Tool for Hybrid

System Modeling and Real Time Simulation.

Simulation: Transactions of the Society for Modeling
and Simulation International. 2011;87(1-2):113–132.

[15] IEEE Design Automation Standards Committee. Std
1164-1993, IEEE Standard Multivalue Logic System for
VHDL Model Interoperability. IEEE, New York, USA.

1993.

SNE 33(4) – 12/2023

