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Introduction 

Observation

           Simulation models are often (tricky) implemented to fit RL needs 

           → complicated model structures and limited reusability of comps & meths

Objectives

         (M&S conform model & experiment design)

          Clear separation between:

                     Model Under Study (MUS) and

                     Context of use (experiment)

           to support: 

                       Independent development and

                     General reusability of MUS and experiment methods 3



Basics
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Structure of Simulation Based Experiments (SBE)

          EC   Experiment Control

ExpMeth   Experiment Method

SimMeth   Simulation Method

Simulator (MATLAB/SimEvents)

DESM         Discrete Event   
                   Simulation Model 

EF               Experimental Frame

MUS           Model Under Study

The MUS is part of an experiment,
involving multiple levels of methods.
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DESM structure using Experimental Frame (EF) 
(EF introd. by B.P. Zeigler)

• DESM is divided into MUS & EF

• EF specifies the conditions under 
which a MUS is experimented with

  Formal definition:

      EF = <T, Ω
I
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Reinforcement Learning (RL)

• Agent observes state st of environment

• Agent chooses an action at according to its policy π(st)

• Environment executes its TM and RM and responds with (st+1 rt+1)

• Agent improves (learns) policy π(st) to maximize the cumulative reward 

– Various learning approaches (Q, DQN, …)
– Training is done by repetition of episodes starting with environment 

in s0 to sfinal | sabort

t     order of tupels (at st)

at     action (a )єA

st     state (s )єS

rt     reward (r )єR

TM  transition model

RM  reward model

π     policy
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SBE with integrated RL using EF

8



Structure of a SBE with integrated RL 
(e.g. with MATLAB/SimEvents)
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SimEvents

ec.m

training.m

sim.m

• EC sets training-, sim-, and DESM 
parameters

• ExpMeth is the training alg. and
ctrls computation of episodes

• SimMeth ctrls sim run (1 episode)

• Simulator executes sim run

• DESM implements
– MUS (as part of RL Env) 

EF (Agent & RL specific Env.)  



• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven 
by MUS outputs → sequent. order t of RL

 

DESM with
MUS & EF for RL
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• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven 
by MUS outputs → sequent. order t of RL

• Agent is a Generator at=Agent(st, rt, isDone)

 

DESM with
MUS & EF for RL
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• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven 
by MUS outputs → sequent. order t of RL

• Agent is a Generator at=Agent(st, rt, isDone)

• Reward Model (RM) is a Transducer comp 
→ not part of MUS, rt+1=Reward(st+1,O‘MUS)

 

DESM with
MUS & EF for RL
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• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven 
by MUS outputs → sequent. order t of RL

• Agent is a Generator at=Agent(st, rt, isDone)

• Reward Model (RM) is a Transducer comp 
→ not part of MUS, rt+1=Reward(st+1,O‘MUS)

• Encoder & Decoder transform the differing 
state/action representation of MUS & RL
IMUS(τ)=Encoder(at),  [st+1,O‘MUS]=Decoder(OMUS(τ))
MUS + Decoder are the TM in sense of RL

DESM with
MUS & EF for RL
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• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven 
by MUS outputs → sequent. order t of RL

• Agent is a Generator at=Agent(st, rt, isDone)

• Reward Model (RM) is a Transducer comp 
→ not part of MUS, rt+1=Reward(st+1,O‘MUS)

• Encoder & Decoder transform the differing 
state/action representation of MUS & RL
IMUS(τ)=Encoder(at),  [st+1,O‘MUS]=Decoder(OMUS(τ))
MUS + Decoder are the TM in sense of RL

• Acceptor checks run conditions and sets 
isDone=0|1 for terminating RL episode

DESM with
MUS & EF for RL
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Case study with MATLAB/SimEvents
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The MUS: simple ProductionLine

• Generation of different jobTypes is triggered 
by input event msgStart

• Service time of 1st server depends on inputs
 jobType and param

• Changing jobTypes require retooling time

• Jobs are routed to type-specific downstream 
queues/servers with different service time → 
output event y_msgFinish

• Goal: find best control strategy for injecting 
jobs to balance content of downstream 
queues
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• MUS ProdLine

• EF Generator Controller 
computes next jobType based on 
Transducer output yDec
 

• EF Generator Encoder provides 
MUS conform inputs (msgStart, 
jobType)

• EF Transducer transforms MUS 
outputs for Controller (yDec with 
queue diff., …) and computes SU

• EF Acceptor checks queue diff.
and time condition τ < τfinal to exit 
sim run

Structure of MUS and EF using a heuristic ctrl

msgStart        

MUS
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• Same MUS Prodline

• EF is triggered by MUS 
output events

• EF Generator Q-Agent 
computes action values a

t

• EF Generator Encoder 
transforms at to MUS inputs 
(msgStart, jobType) 

• EF Transducer Decoder 
transf MUS outputs to RL 
conform values st+1

• EF Transducer Reward 
computes rt+1

• EF Acceptor checks all 
values and sets isDone
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Structure of MUS and EF using a Q-Agent 
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Triggered Agent - Detail

Triggered Agent

Transducer / SU Mapping

• Same MUS Prodline

• Nearly the same EF

– Q-Agent is replaced by 
MathWorks’ RL Agent

– BUT RL Agent isn’t designed 
for event-driven simulations
→ using Trigerred Subsystem   
    as a workaround

• RL tbx provides an ExpMeth train 
and a specific SimMeth sim 
(different from regular sim method)
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Structure of MUS and EF using MathWorks’
RL Agent 



Training Result after 5000 episodes
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Conclusions

• Structure of SBE and concept of EF provide a clear methodological 
approach for integrating Discrete Event Simulation (DES) and RL

• The MUS and the experiment methods can be developed 
independently and reused in different contexts
 

• Case study depicted the reusability of a MUS in three different 
experiments
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• when MUS output event
y_msgFinish(τ), then  

Transducer.Decoder

transforms MUS outputs
y_sSetting(τ),
y_#jobsQ1(τ),
y_#jobsQ1(τ)

to the single RL state st+1
sysState4Agent

computes other
values of interest

activates Transducer.Reward
via event

qlQ1=max( ynumJobsQ1 , qlengthmax)
qlQ 2=max( ynumJobsQ2 , qlengthmax)

st+1=(sSetting−1)⋅(qlengthmax+1)
2
+qlQ1⋅(qlengthmax+1)+qlQ 2+1

Operation of Decoder in the EF
(for the Example with Q-Agent) 



r t+1={
100 ∣ qlQ 1≥10∧qlQ 2≥10
qlQ 22 ∣ qlQ 1≥10∧qlQ 2<10
qlQ12 ∣ qlQ1<10∧qlQ 2≥10

qlQ 22⋅qlQ12

100
∣ else }

• Transducer.Reward

computes

r
t+1

 value based on
the values of interest
numJobsQ1

t+1

numJobsQ1
t+1

instead of RL next state s
t+1

activates Acceptor
via event

Operation of Reward in the EF
(for the Example with Q-Agent) 



• Acceptor monitors condition
τ < τ

final (endOfEpisode)

and sets isDone= 0|1 
to go on or exit
episode by Agent

s
t+1

,r
t+1

 are passed to the
Agent

activates Agent
via event
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Operation of Acceptor in the EF
(for the Example with Q-Agent) 

ACCEPTOR EXTENSION USING VALUES OF INTEREST
if (qlQ1−qlQ 2)2 ≥ diff max , then isDone=1 , else isDone=0
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