
Thorsten Pawletta, Jan Bartelt

Wismar University of Applied Sciences
Faculty of Engineering / Research Group CEA
{thorsten.pawletta, jan.bartelt}@hs-wismar.de

Integration of Reinforcement Learning
and Discrete Event Simulation

Using the Concept of Experimental Frame

EUROSIM Congress, Amsterdam/NL, July 3-5, 2023

Outline

• Introduction

• Basics
– Structure of Simulation Based Experiments (SBE)
– Concept of Experimental Frame (EF)
– Reinforcement Learning (RL)

• SBE with integrated RL using EF

• Case study with MATLAB/SimEvents

• Conclusions

2

Introduction

Observation

 Simulation models are often (tricky) implemented to fit RL needs

 → complicated model structures and limited reusability of comps & meths

Objectives

 (M&S conform model & experiment design)

 Clear separation between:

 Model Under Study (MUS) and

 Context of use (experiment)

 to support:

 Independent development and

 General reusability of MUS and experiment methods 3

Basics

4

Structure of Simulation Based Experiments (SBE)

 EC Experiment Control

ExpMeth Experiment Method

SimMeth Simulation Method

Simulator (MATLAB/SimEvents)

DESM Discrete Event
 Simulation Model

EF Experimental Frame

MUS Model Under Study

The MUS is part of an experiment,
involving multiple levels of methods.

5

DESM structure using Experimental Frame (EF)
(EF introd. by B.P. Zeigler)

• DESM is divided into MUS & EF

• EF specifies the conditions under
which a MUS is experimented with

 Formal definition:

 EF = <T, Ω
I
, I

MUS
, O

MUS
, C, Ω

C
, SU, I

EF
, O

EF
>

 T may differ from MUS

 Generator
 comp. Ω

I
 for I

MUS
 and EF other comps

 Transducer
 comp. values of interest and SU based
 on O

MUS

 Acceptor
 checks compliance of Ω

C
 based on

 C ⊂ O
MUS 6

Reinforcement Learning (RL)

• Agent observes state st of environment

• Agent chooses an action at according to its policy π(st)

• Environment executes its TM and RM and responds with (st+1 rt+1)

• Agent improves (learns) policy π(st) to maximize the cumulative reward

– Various learning approaches (Q, DQN, …)
– Training is done by repetition of episodes starting with environment

in s0 to sfinal | sabort

t order of tupels (at st)

at action (a)єA

st state (s)єS

rt reward (r)єR

TM transition model

RM reward model

π policy

7

SBE with integrated RL using EF

8

Structure of a SBE with integrated RL
(e.g. with MATLAB/SimEvents)

9

SimEvents

ec.m

training.m

sim.m

• EC sets training-, sim-, and DESM
parameters

• ExpMeth is the training alg. and
ctrls computation of episodes

• SimMeth ctrls sim run (1 episode)

• Simulator executes sim run

• DESM implements
– MUS (as part of RL Env)

EF (Agent & RL specific Env.)

• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven
by MUS outputs → sequent. order t of RL

DESM with
MUS & EF for RL

10

DESM

• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven
by MUS outputs → sequent. order t of RL

• Agent is a Generator at=Agent(st, rt, isDone)

DESM with
MUS & EF for RL

11

DESM

• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven
by MUS outputs → sequent. order t of RL

• Agent is a Generator at=Agent(st, rt, isDone)

• Reward Model (RM) is a Transducer comp
→ not part of MUS, rt+1=Reward(st+1,O‘MUS)

DESM with
MUS & EF for RL

12

DESM

• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven
by MUS outputs → sequent. order t of RL

• Agent is a Generator at=Agent(st, rt, isDone)

• Reward Model (RM) is a Transducer comp
→ not part of MUS, rt+1=Reward(st+1,O‘MUS)

• Encoder & Decoder transform the differing
state/action representation of MUS & RL
IMUS(τ)=Encoder(at), [st+1,O‘MUS]=Decoder(OMUS(τ))
MUS + Decoder are the TM in sense of RL

DESM with
MUS & EF for RL

13

DESM

• MUS: discr event system with contin time τ

• EF comps are time-triggered or event-driven
by MUS outputs → sequent. order t of RL

• Agent is a Generator at=Agent(st, rt, isDone)

• Reward Model (RM) is a Transducer comp
→ not part of MUS, rt+1=Reward(st+1,O‘MUS)

• Encoder & Decoder transform the differing
state/action representation of MUS & RL
IMUS(τ)=Encoder(at), [st+1,O‘MUS]=Decoder(OMUS(τ))
MUS + Decoder are the TM in sense of RL

• Acceptor checks run conditions and sets
isDone=0|1 for terminating RL episode

DESM with
MUS & EF for RL

14

DESM

Case study with MATLAB/SimEvents

15

The MUS: simple ProductionLine

• Generation of different jobTypes is triggered
by input event msgStart

• Service time of 1st server depends on inputs
 jobType and param

• Changing jobTypes require retooling time

• Jobs are routed to type-specific downstream
queues/servers with different service time →
output event y_msgFinish

• Goal: find best control strategy for injecting
jobs to balance content of downstream
queues

16

• MUS ProdLine

• EF Generator Controller
computes next jobType based on
Transducer output yDec

• EF Generator Encoder provides
MUS conform inputs (msgStart,
jobType)

• EF Transducer transforms MUS
outputs for Controller (yDec with
queue diff., …) and computes SU

• EF Acceptor checks queue diff.
and time condition τ < τfinal to exit
sim run

Structure of MUS and EF using a heuristic ctrl

msgStart

MUS

17

• Same MUS Prodline

• EF is triggered by MUS
output events

• EF Generator Q-Agent
computes action values a

t

• EF Generator Encoder
transforms at to MUS inputs
(msgStart, jobType)

• EF Transducer Decoder
transf MUS outputs to RL
conform values st+1

• EF Transducer Reward
computes rt+1

• EF Acceptor checks all
values and sets isDone

18

Structure of MUS and EF using a Q-Agent

msgStart

jobType

param

y_msgFinish

y_sSetting

y_#jobsQ1

y_#jobsQ2

y_#jobs1sold

y_#jobs2sold

ProdLine

msgStart

state

reward

isDone

msgFinish

action

SU Agent

Agent

y_msgStart

y_sSetting

y_#jobsQ1

y_#jobsQ2

y_#jobs1sold

y_#jobs2sold

msgFinish

sysState4Agent

numJobsQ1

numJobsQ2

Decoder

m
sg

S
ta

rt

n
u

m
Jo

b
sQ

1

nu
m

Jo
b

sQ
2

m
sg

F
in

is
h

re
w

ar
d

Reward

m
sg

S
ta

rt

jo
bT

yp
e

In

m
sg

F
in

is
h

jo
bT

yp
e

O
ut

Encoder

msgStart

rIn

sIn

msgFinish

sOut

rOut

isDone

Acceptor

reward

SU_MUS
SU_Agent

SU Mapping

param

Parameters

MUS

msgGenJob

m
s

gG
en

Jo
b

jobType

param

y_msgFinish

y_sSetting

y_#jobsQ1

y_#jobsQ2

y_#jobs1sold

y_#jobs2sold

y_msgStart

y_sSetting

y_#jobsQ1

y_#jobsQ2

y_#jobs1sold

y_#jobs2sold

msgFinish

sysState4Agent

numJobsQ1

numJobsQ2

Decoder

m
sg

S
ta

rt

nu
m

Jo
bs

Q
1

nu
m

Jo
bs

Q
2

m
sg

F
in

is
h

re
w

a
rd

R
e

w
a

rd

jo
bT

yp
eI

n
jo

bT
yp

eO
ut

E
n

co
d

e
r

msgStart

sIn

rIn

msgFinish

msgFinish sOut

rOut

isDone

Acceptor

SU_Agent

y_sSetting

y_#jobsQ1

y_#jobsQ2

reward

sIn

rIn

isDoneSU_Agent

param

Parameters ProdLine

m
sg

S
ta

rt

msgFinish

1

1

sIn

2

rIn

3

isDone

2

3

observation

reward

isdone

action

cumulative reward

Send

SU_Agent

Trigger

action

action

Triggered Agent - Detail

Triggered Agent

Transducer / SU Mapping

• Same MUS Prodline

• Nearly the same EF

– Q-Agent is replaced by
MathWorks’ RL Agent

– BUT RL Agent isn’t designed
for event-driven simulations
→ using Trigerred Subsystem
 as a workaround

• RL tbx provides an ExpMeth train
and a specific SimMeth sim
(different from regular sim method)

19

Structure of MUS and EF using MathWorks’
RL Agent

Training Result after 5000 episodes

20

Conclusions

• Structure of SBE and concept of EF provide a clear methodological
approach for integrating Discrete Event Simulation (DES) and RL

• The MUS and the experiment methods can be developed
independently and reused in different contexts

• Case study depicted the reusability of a MUS in three different
experiments

21

Backyard Slides

• when MUS output event
y_msgFinish(τ), then

Transducer.Decoder

transforms MUS outputs
y_sSetting(τ),
y_#jobsQ1(τ),
y_#jobsQ1(τ)

to the single RL state st+1
sysState4Agent

computes other
values of interest

activates Transducer.Reward
via event

qlQ1=max(ynumJobsQ1 , qlengthmax)
qlQ 2=max(ynumJobsQ2 , qlengthmax)

st+1=(sSetting−1)⋅(qlengthmax+1)
2
+qlQ1⋅(qlengthmax+1)+qlQ 2+1

Operation of Decoder in the EF
(for the Example with Q-Agent)

r t+1={
100 ∣ qlQ 1≥10∧qlQ 2≥10
qlQ 22 ∣ qlQ 1≥10∧qlQ 2<10
qlQ12 ∣ qlQ1<10∧qlQ 2≥10

qlQ 22⋅qlQ12

100
∣ else }

• Transducer.Reward

computes

r
t+1

 value based on
the values of interest
numJobsQ1

t+1

numJobsQ1
t+1

instead of RL next state s
t+1

activates Acceptor
via event

Operation of Reward in the EF
(for the Example with Q-Agent)

• Acceptor monitors condition
τ < τ

final (endOfEpisode)

and sets isDone= 0|1
to go on or exit
episode by Agent

s
t+1

,r
t+1

 are passed to the
Agent

activates Agent
via event

25

Operation of Acceptor in the EF
(for the Example with Q-Agent)

ACCEPTOR EXTENSION USING VALUES OF INTEREST
if (qlQ1−qlQ 2)2 ≥ diff max , then isDone=1 , else isDone=0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

