
62 TRANSACTIONS Volume 18, Number 2

TRANSACTIONS of The Society for Modeling and Simulation International
ISSN 0740-6797/00
Copyright © 2001 The Society for Modeling and Simulation International
Volume 18, Number2, pp.

On the Integration of HLA into SCEs

Sven Pawletta1, Wolfgang Drewelow1 and Thorsten Pawletta2

1University of Rostock, Department of Electrical Engineering, D-18051 Rostock, Germany, E-mail:
sven.pawletta@etechnik.uni-rostock.de; 2University of Wismar, Department of Mechanical Engineering,
D-23952 Wismar, Germany, E-mail: pawel@mb.hs-wismar.de

Presently, two ways exist to build HLA-based simulations: (1) federates are programmed with high-level lan-
guages under direct use of RTI libraries; and (2) federates are created with HLA-compliant special-purpose
systems (mostly simulation systems). Both methods are not particularly accepted in application domains, where
interpreter-based scientific computing environments (SCEs) are preferred. To solve this problem, the possibilities
of an integration of HLA into SCEs are examined. The discussion is mainly focused on the following aspects:
impact of RTI implementations, RTI/SCE-linkage and design of an HLA interface for interactive/interpretive use.
An example implementation for the SCE MATLAB (HLA Toolbox), the results of a benchmark test and a demon-
stration application are presented.

Keywords: HLA, SCEs, distributed simulation, RTI, MATLAB, CACSD-systems

1. Introduction
The High Level Architecture for modeling and simulation (HLA)
has its origin in the military domain. Nevertheless, specifica-
tions and supporting software are openly available and can be
used for civil projects. Consequently, there is a growing com-
munity of HLA users in the civil domain.

Schulze et al. compare in [8] the military with the civil simu-
lation worlds. They determine on the one hand, that the ap-
proaches and general methods which are used in both commu-
nities are very similar. On the other hand, there are major
differences in how simulations are developed. This is also true
for HLA-based distributed simulations.

In the military community, federates for a distributed simu-
lation are usually programmed with high-level languages under
direct use of a RTI library. This is the original method to create
HLA federates.

For civil projects, simulation systems are preferred. Conse-
quently, a number of investigations have been made, in order to
enable existing simulation systems to cooperate with HLA [3,
8, 9].

HLA-compliant simulation systems are a great improvement
over manual programming for many application fields. Never-
theless, there are domains where even this method is not par-
ticularly accepted. One of these domains is control engineering.
Here, scientific and technical computing environments (SCEs)
have been established as powerful tools for solving analysis and
design problems. For these domains, we need a third method in
order to build federates for HLA-based simulations within SCEs.

Therefore, this article discusses requirements and solutions
for integrating HLA into SCEs. At first, basic terms around HLA

and SCEs are introduced. Then, we examine the integration prob-
lem. Finally, an example implementation for the widely-used
SCE MATLAB, the results of a first benchmark test and a simple
demonstration application are presented.

2. The High Level Architecture (HLA)
The HLA standard defines an architecture for component-based
distributed simulations. A component is mainly a single simula-
tion. However, components can also have other functions such
as data collection, visualization and process coupling. A HLA
component is called a federate. In nontrivial applications, at least
two components form a distributed system, which is called fed-
eration.

The current version 1.3 of the HLA standard [1] consists of
three parts—Rules, Object Model Template and Interface Speci-
fication.

The interface specification is the most important part of the
standard for the actual work with HLA. In the first section, it
defines services in a language-independent manner that have to
be provided by a run-time system, which is called Run-Time
Infrastructure (RTI), and by the federates. The second section
defines calling conventions for the programming languages IDL,
C++, Ada 95 and Java.

Since the HLA standard defines only the interface between
federates and the RTI, completely different RTI implementa-
tions are possible (Figure 1). A run-time system for IP-based
networks is available from the Defense Modeling and Simula-
tion Office (DMSO).

3. Scientific Computing Environments (SCEs)
Today, SCEs are the dominating tools for computation and vi-
sualization in many engineering domains. Originally, they were
created to support the computer-aided control system design
(CACSD) process. Up to the mid-1990s, there was a relatively

S. Pawletta, W Drewelow, T. Pawletta

Volume 18, Number 2 TRANSACTIONS 63

Figure 1. Possible RTI implementations

Figure 2. Structure of DMSO RTI 1.3

June TRANSACTIONS 2001

64 TRANSACTIONS Volume 18, Number 2

clear distinction between computer numeric systems (CNS), e.g.,
MATLAB, MatrixX) and computer algebra systems (CAS), e.g.,
Maple, MuPAD). Recently, there are also hybrid systems avail-
able (e.g., MATLAB/Maple-linkage).

Primarily, SCEs are used to develop prototypes. This is very
different from conventional programming with high-level lan-
guages such as Fortran, C and C++, which are used to produce
run-time and memory-efficient code.

The two key concepts for SCE-based rapid prototyping are:
• SCEs operate interpretively. Hence, routines can be executed
directly from a command prompt. Moreover, user-defined rou-
tines can be executed without compilation. This kind of
interactivity guarantees a very short error correction cycle.
• SCEs provide integrated array-oriented programming lan-
guages, which support implicitly typed data objects, whereby,
scientific and technical problems, which are mainly based on
vector or matrix calculations, can be coded very efficiently.

Accordingly, the way of solving problems using SCEs is com-
pletely different from conventional programming. One-time
analysis and design problems can be solved easily by entering
the data set and invoking one or more existing routines. If a
problem has to be solved several times with different data sets,
the necessary routine sequence is written in a script, which can
be executed in the same way as a predefined routine. Unlike
conventional programming which involves the implementation
of a self-contained application program, the principle of solv-
ing problems with SCEs is the gradual extension of already avail-
able functionality. The result of such a solution process is usu-
ally the construction of a new library or toolbox containing a
number of problem-specific routines.

In the following section, we use MATLAB as example sys-
tem to discuss the HLA/SCE integration. MATLAB is a model
for many other SCEs and provides probably the most compre-
hensive collection of sophisticated methods relevant to simula-
tion tasks. This includes routines for numerical integration, mul-

tidimensional data visualization and animation, containment in
the base-system, and tool-boxes or subsystems for continuous,
discrete and hybrid simulation (ODE Tbx., PDE Tbx., Simulink,
Stateflow, GPSS Tbx.; [2, 4, 7]). Even toolboxes for parallel
and distributed computing are available (DP Tbx., PT Tbx.,
MultiMatlab Tbx; [5]).

4. HLA/SCE Integration
There are two general approaches to add HLA functionality to
SCEs. The first approach is the implementation of a RTI, which
is specifically designed to operate in conjunction with a SCE.
Because of the necessary implementation effort, this seems to
be an unfavorable approach. Nevertheless, it has also notable
advantages—A full HLA-compliant RTI implementation has to
provide about 130 services, but many applications use only a
small subset of them. A specifically implemented RTI could be
scaled according to the requirements of an application domain.
Moreover, it could be ported to any desired platform (e.g., non-
IP networks, real time operating systems).

The second approach is the integration of an existing RTI
into a SCE. This approach reduces significantly the implemen-
tation effort and shall be examined in the following paragraphs.

4.1. RTI/SCE Linkage

As mentioned in Section 2, the implementation of a run-time
infrastructure is not standardized. Nevertheless, the problem of
creating a suitable linkage between a RTI and a SCE is mostly
independent of the concrete RTI implementation. The follow-
ing discussion is based on RTI implementations from the De-
fense Modeling and Simulation Office (DMSO), which are
openly available.

The components of the DMSO RTI 1.3 and their relations
are shown in Figure 2. The run-time system management (run-
time infrastructure executive) is implemented as a separate pro-
gram (rtiexec) and controls the execution (starting and termi-
nating) of federations. It is the global part of the RTI.

The federation management (federation executive) is like-
wise implemented as a separate program (fedexec), which con-
trols joining as well as leaving of federates to or from a running
federation.

The crucial component for the RTI/SCE linkage is the RTI
library (Figure 3). It provides a bidirectional interface consist-
ing of the concrete class RTIambassador and the abstract class
FederateAmbassador. The RTIambassador is the interface to
the RTI services, which can be requested by federates (feder-
ate-initiated services). The FederateAmbassador defines proto-
types for all methods that a federate has to provide for the RTI
(RTI-initiated services).

Almost all SCEs provide an application programming inter-
face (API) for extensions written in Fortran or C. In the case
with MATLAB, it is called MEX-interface (MATLAB external
interface). Although these interfaces were originally designed
for linking individual external routines, they provide sufficient
functionality to integrate an entire function library.

Figure 4 shows the principle of such a binding for MATLAB.
Since the library functions operate independently, each routine

Figure 3. The RTI/Federate interface

S. Pawletta, W Drewelow, T. Pawletta

Volume 18, Number 2 TRANSACTIONS 65

is linked via a separate gateway function (MEX-function), which
usually carries the same name as the library function. The ma-
jor task of the gateway functions is the conversion of the SCE
calling parameters (arrays) into C function arguments
(m2c(iarys, &iargs)), before a library routine is called, and the
re-conversion of the result (c2m(oargs, &oarys)), after the rou-
tine returns.

Unfortunately, a RTI library cannot be linked in such a simple
manner, because it contains global and persistent data objects.
In this case, the binding mechanism has to ensure, that the en-
tire library code is always loaded as a single module. Further-
more, dynamic memory management must not automatically
unload this module under any circumstances (module locking).
Otherwise, status information would be lost.

Therefore, the binding of a RTI library has to be realized
with a single gateway function as shown in Figure 5. The selec-
tion of the desired RTI function has to be done by a numeric
code (fcn). In order to provide a simple calling syntax, this call-
ing mechanism has to be hidden by a suitable user interface
inside the SCE.

4.2. An Interactive HLA Interface

Actually, the binding of a RTI library to a SCE, as discussed in
the last paragraph, is only the first step of an HLA/SCE integra-

tion. In order to allow the SCE typical interactive way of work-
ing, an HLA interface within a SCE has to meet the following
criteria.

(1) Interactively usable designators. RTI routines have fully
descriptive designators. This leads to a very long winded call-
ing syntax such as
rtiAmb.unconditionalAttributeOwnershipDivestiture(...),
which cannot be managed interactively. Therefore, abbreviated
routine designators have to be used in a SCE suitable HLA in-
terface.

Furthermore, instance designators are not necessary because
within a single federation, a federate needs only one
RTIambassador and one FederateAmbassador instance. In or-
der to create a separate designator space, a short prefix is more
suitable.

(2) Vectorization and data objects with implicit types. RTI
routines perform only scalar operations with elementary data
objects as parameters. The repeated execution of an operation
with different parameters, which is often needed in applications,
has to be programmed by additional control structures. Since
inputting control structures interactively is time-consuming and
fault-prone, the routines of a SCE suitable HLA interface should
be vectorized as much as possible.

Figure 4. Binding of an external library via the MEX-interface

Figure 5. Binding of a RTI library

June TRANSACTIONS 2001

66 TRANSACTIONS Volume 18, Number 2

Moreover, the use of the SCE typical data objects with im-
plicit type and dimension information leads to a simplification
of the invocation syntax and reduces the number of interface
routines (e.g., all the auxiliary classes contained in the DMSO
RTI library with more than 80 routines are unnecessary in a
SCE/HLA interface).

(3) Interactive callbacks. In conventional programming, RTI-
initiated services are supplied in form of callback-routines, which
can be invoked by an RTI library over the FederateAmbassador.
However within a SCE, it is uncommon to code routines “in
advance.” In order to solve this problem, default callbacks for
all RTI-initiated services have to be already provided within a
SCE/HLA interface.

If such a default callback is invoked by the RTI, an inter-
preter within the local scope of the callback routine is started.
Parameters transferred to the callback routine can be examined
and further action can be executed interactively. After leaving
the callback routine (entering return), the control flow returns
to the RTI. If the user implements specific callback routines,
the default routines are overlaid.

(4) Selectable exception handling. RTI routines do not handle
exceptions on their own, but return the exceptions back to the
caller. In SCEs, this method is not always suitable. Often, the
exception handling should take place within the routine and the
exception types error and warning are sufficient. If a more com-
plex exception handling is necessary, an additional return pa-
rameter is requested during the invocation of the routine. Using
this parameter, an exception is returned to the caller and the
default exception handling is disabled.

5. The HLA Toolbox
The described approach of integrating HLA into an SCE using
an existing RTI library, as well as an SCE suitable HLA user

interface, have been implemented with the DMSO RTI 1.3 for
the SCE MATLAB. The HLA Toolbox [6] provides, for com-
parison purposes, an object-oriented and a conventional func-
tion-oriented HLA interface.

In order to examine the run-time overhead of MATLAB-
based federates in comparison with C++ federates, the demon-
stration program HelloWorld, which is included as source code
in the DMSO RTI distribution, was implemented with both in-
terface versions of the HLA Toolbox. The results of the investi-
gation are shown in Figure 6. The curves indicate the run-times
of 10 successive executions of a federation, consisting of two
federates of the same implementation: C++(OO) – C++ object-
oriented, M(OO) – MATLAB object-oriented, M(FO) –
MATLAB function-oriented.

Surprisingly, only the object-oriented MATLAB implemen-
tation shows an obvious run-time overhead. The function-ori-
ented MATLAB implementation needs even less run-time than
the C++ reference implementation.

In order to demonstrate the usage of the HLA Toolbox in a
more realistic application, a simple traffic simulation has been
developed (Figure 7). In this application, several MATLAB-
based federates simulate and visualize the car and pedestrian
traffic at a traffic light crossing. In detail, the following feder-
ates are included: time-stepped, event-driven and real-time simu-
lations of the car and pedestrian traffic, event-driven and real-
time control programs for the traffic lights, and a visualization
federate without time management. The commented MATLAB
sources of all federates are given in [6].

6. Conclusions
With the integration of HLA into SCEs, a third method for build-
ing HLA-based simulations becomes available. This new method

Figure 6. Run-time comparison Figure 7. A simple traffic simulation

S. Pawletta, W Drewelow, T. Pawletta

Volume 18, Number 2 TRANSACTIONS 67

is especially important for application domains where SCEs are
the preferred tools.

The usage of an existing RTI reduces significantly the imple-
mentation effort for the HLA extension of a SCE, and guaran-
tees interoperability with other HLA-compliant federates and
systems.

With the HLA Toolbox for MATLAB, the authors have
shown that the integration approach is feasible in two steps. The
first step is the linkage of an existing RTI library with the SCE.
This step is a nontrivial technical problem. The second step is
the construction of an interactively usable HLA interface within
the SCE. This step is a technical as well as a conceptual prob-
lem. Our next investigations will deal with the inclusion of the
MATLAB-based special-purpose tools Simulink (continuous
block-oriented simulation, [4]) and MatlabGPSS (discrete pro-
cess-oriented simulation, [2]) into HLA-based distributed simu-
lations.

7. References
[1] DMSO. HLA Homepage. http://hla.dmso.mil/.

[2] W. Drewelow, S. Pawletta, and T. Pawletta. Hybrid and process-
coupled transaction-oriented simulation in SCEs. In Proc. Simu-
lation and Visualization SimVis99, Magdeburg, Germany, pp
181–192, SCS Int., Ghent, Belgium, 1999.

[3] U. Klein, S. Strassburger, and J. Beikirch. Distributed Simulation
with JavaGPSS, based on the High Level Architecture. In Proc.
Int. Conf. on Web-based Modeling and Simulation, San Diego,
1998.

[4] MathWorks. Documentation set.

 http://www-europe.mathworks.com/access/ helpdesk/help/
fulldocset.shtml.

[5] S. Pawletta. Extension of a Scientific and Technical Computing and
Visualization System (SCE) to an Environment for Developing
Parallel Applications. ARGESIM/ASIM-Verlag, Wien, 2000.
146 pp (in German).

[6] S. Pawletta, T. Pawletta, and W. Drewelow. High-Level Architec-
ture Toolbox (HLA Toolbox) for Use with Matlab: User’s Guide
and Reference Manual Version 0. Inst. of Automatic Control,
Univ. of Rostock, 2000.

[7] T. Pawletta, S. Pawletta, and W. Drewelow. Process-oriented simu-
lation in interactive SCEs. In Proc. Simulation and Visualiza-
tion SimVis98, Magdeburg, Germany, pp 181–194, The Soci-
ety for Computer Simulation International, Ghent, Belgium,
1998.

[8] T. Schulze, S. Strassburger, and U. Klein. Migration of HLA into
civil domains: Solutions and prototypes for transportation ap-
plications. SIMULATION, Vol. 73, No. 5, pp 296–303, 1999.

[9] S. Strassburger, T. Schulze, and G. Lantzsch. Simplex 3 and SLX -
coupled with HLA. In Proc. 13. Symp. Simulationstechnik
ASIM99, Weimar, Germany, pp 331– 336, SCS International,
1999.

